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Abstract

Color image demosaicing is an ill-posed inverse problem that arises in the formation of digital

color images. By designing a demosaicing algorithm that operates on sequences of mosaiced video

frames instead of isolated mosaiced images, one might hope to achieve a higher quality reconstruction.

We propose two different deep convolutional networks for demosaicing that demonstrate the ability

to effectively exploit temporal context frames in producing superior reconstructions as compared to

single-frame networks. The first network explicitly registers frames using a computed optical flow;

the second network adapts a recurrent back-projection architecture originally proposed for video

super-resolution. Additionally, we show that single-frame demosaicing networks benefit from dense

residual connections. Our contributions are supplemented with a review of the theory of proximal

operators, image processing, neural networks, and demosaicing.
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Chapter 1

Introduction

So the natural light makes it clear to me that my ideas are like pictures or images that can easily

fall short of the perfection of the things from which they are taken, but which can’t exceed it.

— Rene Descartes, Meditations on First Philosophy [13].

Color image demosaicing is an ill-posed inverse problem that arises in the formation of digital

color images. A patterned filter on top of the sensor grid enables a camera to differentiate color,

but the measurements thereby obtained are incomplete. The process of generating a complete,

viewable image from the incomplete, mosaiced measurements is called demosaicing. Recent efforts

in the development of demosaicing algorithms have employed convolutional neural networks to great

success. In this work, we consider an extension of the single-image demosaicing problem to video

or film scanning applications. By designing a demosaicing algorithm that operates on sequences

of mosaiced video frames instead of isolated mosaiced images, one might hope to achieve a higher

quality reconstruction. We propose two different deep convolutional networks for demosaicing

that demonstrate the ability to effectively exploit temporal context frames in producing superior

reconstructions compared to single-frame networks of similar size.

In Chapters 2 – 5, we discuss relevant material from the theory of proximal operators, image

processing, neural networks, and demosaicing. Chapter 2 covers inverse problems, an important

framework for many problems in computational imaging, including demosaicing. Chapter 3 reviews

material from signal processing and digital imaging relevant to our present efforts. Chapter 4

discusses deep learning, the core component of our proposed methods. The connection between
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convolutional neural networks and convolutional sparse coding, as established in [48], is also pre-

sented. Chapter 5 reviews the demosaicing problem, solutions from the literature, and networks for

super-resolution and optical flow estimation that are pertinent to our work.

In Chapter 6, we present the results of our numerical experiments with convolutional networks

for the image and video demosaicing problems. We define several architectures for spatial and

temporal demosaicing along with training details and accuracy as evaluated on several demosaicing

test datasets. We evaluate identity-bypass networks, dense residual connection networks, and deep

back-projection networks for the image demosaicing problem. For the video demosaicing problem,

we propose and evaluate MFD-Net, a network that registers several frames using an optical flow

and exploits the temporal information therein. We also adapt a recurrent back-projection network

architecture originally proposed in the super-resolution literature for the video demosaicing problem.

We include both quantitative and qualitative comparison of demosaicing networks. Our findings are

threefold: First, dense residual connections are advantageous to single image demosaicing networks.

Second, MFD-Net suffers from a learning problem but demonstrates promising performance over

single image methods. Third, deep recurrent back-projection networks effectively and efficiently

exploit temporal context for demosaicing video sequences. Finally, future research directions are

proposed.
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Chapter 2

Inverse problems

We introduce the theory of inverse problems. Many important applications of mathematics rely on

the inverse problem framework, including our present topic of digital image acquisition. Inverse

problems are often ill-posed, in which case regularization methods are considered. Inverse problems

rarely admit closed-form solutions and there are many proposed methods to obtain approximate

solutions. In particular, we review the Bayesian maximum a posteriori method. We consider

the class of proximal algorithms for minimization, and show how the majorization-minimization

framework for optimization can be seen as an instance of the proximal gradient method.

Section 2.1

What is an inverse problem?

A physical theory enables us to predict the outcome of measurements of a physical system using a

model of that system. The model encapsulates our understanding of causes, from which observable

effects may be predicted. In order for the predictions to be reliable, the physical theory underlying

the model must be accurate, and the parameters used in constructing the model must be well-tuned.

Once we have a tuned model, the process of predicting outcomes is known as the forward problem.

The inverse problem, by contrast, is to infer the set of model parameters from the observed

data. Inverse problems are widespread in applied mathematics and the sciences. Many problems in

medical and commercial imaging and image recovery can be analyzed as inverse problems: X-ray
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computed tomography, MRI, digital camera image acquisition, image inpainting, and more. As an

example, consider the problem of recovering an image that has been blurred with a convolutional

filter1. In this case, the measurement operator M is a convolution with the blurring filter, and we

seek a way to invert the convolution to acquire the original, unblurred image x from the blurry

variant y.

In most situations observations are noisy, making the forward problem nondeterministic. In

many situations, multiple sets of model parameters could feasibly have generated the same observed

data, making the solution of the inverse problem non-unique. Techniques for the solution of inverse

problems must be robust to these difficulties.

Section 2.2

Mathematical characterization

Let x denote the parameters of a model, y denote the obtained measurements, and M denote the

measurement operator of the forward problem that maps the internal parameters of the model to the

observed measurements. We assume that x ∈ X, y ∈ Y,M : X → Y where X,Y are (e.g.) Hilbert

spaces and M is a mapping between them. A no-frills inverse problem is therefore reconstructing x

from y, where

y = Mx

models the system. The choice of M and X encapsulate all that is known about the system under

observation; the choice of Y is made in accordance with the measured data.

In practice, the measurements from a physical system are noisy. To incorporate noise into the

inverse problem, define the noise term n := y −Mx. The noise term captures whatever error arises

1This is the deconvolution problem
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from either the measurement process itself, or a misspecification of the forward operator M . The

inverse problem with noise is then

y = Mx+ n. (2.1)

It is common to model n as a random variable with some specified distribution, referred to as

the noise model of the inverse problem. If n could be modeled deterministically, then it could be

incorporated into M .

If M is injective, that is,

Mx1 = Mx2 =⇒ x1 = x2 ∀x1, x2 ∈ X

then an inverse operator

M−1 : Im(M) ⊂ Y → X

is in principle well-defined. However, if the inversion of the forward operator amplifies noise in

the measurements to an unacceptable degree, or if the forward operator is not injective, then the

inverse problem may be considered ill-posed. There is not a universal definition of ill-posedness for

inverse problems as the degree to which noise amplification is tolerated in the inverse operator is

domain-specific.

For a more complete discussion of inverse problems, including solution methods and regulariza-

tion techniques, refer to [63, 28, 61, 3].

5



Section 2.3

Methods for solution

Rarely do inverse problems of interest admit closed-form solutions. Numerical algorithms are thus a

widely popular class of solution methods. It is often useful to incorporate into these methods prior

information about the nature of the parameter space X. The incorporation of prior information

into a numerical method for solution is called regularization.

Tikhonov regularization (or L2 regularization), [63, 28], seeks a regularized solution to the inverse

problem by

x∗ = arg min
x

‖Mx− y‖22 + α‖x‖22 (2.2)

where α > 0 tunes the regularization.2 Other terms, such as total variation or a sparsity-inducing

transformation of the reconstructed solution, can be used to promote certain types of reconstructions.

Another common way of accomplishing regularization is with a Bayesian framework. Here,

two probability distributions are needed: the first is the likelihood function p(y|x) expressing the

conditional probability of observing y when the “true” parameters are x. As the measurement

operator M is deterministic, knowledge of the probability density of the noise term n is sufficient

to characterize the likelihood function since for every x ∈ X,

p(y|x) = p(Mx+ n|x) = pn(n)

where pn is the probability density of the noise term. The second distribution we need is a density

function p(x) encoding the prior information known about the parameter space X. Given these

2Tikhonov himself [63] proposed a class of regularizing operator for ill-posed inverse problems on function spaces
with uniqueness and stability guarantees that is similar to, but not identical with, the parametrized L2 regularization
which now bears his name.
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two distributions, we apply Bayes’ theorem to compute the posterior distribution

p(x|y) =
p(y|x)p(x)

p(y)
.

A solution to the inverse problem may then be obtained by means of maximum likelihood estimation

on the posterior distribution. Our solution x∗ to the inverse problem y = Mx+n is then computed

as follows:

x∗ = arg max
x∈X

p(x|y)

= arg max
x∈X

[log p(x|y)]

= arg min
x∈X

[− log p(y|x)− log p(x)]

Such a Bayesian approach is not computationally trivial. The optimization problem requires

repeated sampling of the posterior function, which is potentially very complicated. Introducing

logarithms, as above, separates the posterior its constituent likelihood and prior distributions and

is a first step towards tractable minimization.

In domains like image processing, the prior p(x) is a probability distribution on the set of

possible images. Representing an image requires many parameters, and defining a realistic prior

distribution on the set of all possible images is a complex task. Indeed, a totally satisfactory prior

would incorporate a large amount of statistical information about the structure of images, and it

may be very difficult to compute with.
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Section 2.4

Proximal algorithms for minimization

The theory of proximal operators has been brought to bear on the solution of inverse problems, with

some substantial successes [12]. With this in mind, we examine the essential elements of proximal

operators. For a more detailed reference survey, we refer the reader to [49].

Proximal algorithms are tools for the minimization of (potentially non-smooth) functions. The

basic element of a proximal algorithm is the proximal operator of a function f : Rn → R ∪∞. We

require f to be convex, i.e.

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ∀x1, x2 ∈ Rn, λ ∈ [0, 1]

and everywhere subdifferentiable, that is,

∂f(x) 6= ∅ ∀x ∈ Rn

where ∂f(x) denotes the subgradient set of f at x,

∂f(x) := {g | ∀y f(y) ≥ f(x) + g · (y − x) }.

The proximal operator of f with parameter λ > 0 is proxλf : Rn → Rn given by

prox
λf

(v) = arg min
x∈Rn

[
f(x) +

1

2λ
‖x− v‖22

]
.

The parameter λ controls how close proxλf (v) is to v compared to the minimizer x∗ of f .

8



It is worth mentioning that regardless whether f is strictly convex or not, proxλf is well-defined

since f(x)+ 1
2λ‖x−v‖ is a strictly convex function of x. We also observe that the proximal operator

generalizes the notion of projection. For a closed convex set C, consider the indicator function

f(x) =


0 x /∈ C

∞ x ∈ C

and note that proxf (v) gives the standard orthogonal projection of v onto C,

arg min
x∈C

‖x− v‖22.

In general, the fixed points of a proximal operator are precisely the minimizers of f .

Theorem 1. x∗ minimizes f if and only if x∗ = proxf (x∗).

Proof. (⇒) Suppose that x∗ minimizes f . Then for any z ∈ Rn, we have that

f(z) +
1

2
‖z − x∗‖22 ≥ f(x∗) +

1

2
‖z − x∗‖22

≥ f(x∗) +
1

2
‖x∗ − x∗‖22

= f(x∗)

so x∗ = proxf .

(⇐) Suppose that x∗ = proxf (x∗). Let Q(y) = f(y) + 1
2‖x

∗ − y‖22, so that x∗ minimizes Q by

definition of the proximal operator. We use the following facts about the subgradient operator: first,

that if h1, h2 are subdifferentiable functions, then ∂(h1 +h2)(x) = ∂h1(x)+∂h2(x) where + denotes

set addition; second, that x minimizes a subdifferentiable function h if and only if 0 ∈ ∂h(x); third

9



that if h is differentiable at x with gradient ∇h(x), then ∂h(x) = {∇h(x)}. All three properties

follow easily from the definition of the subgradient operator.

Thus

0 ∈ ∂Q(x∗)

= ∂f(x∗) + {‖x∗ − x∗‖1}

= ∂f(x∗) + {0} = ∂f(x∗).

which concludes the proof, by the second property of the subgradient.

The proximal operator may be interpreted as a gradient step. We introduce the Moreau envelope

for convex subdifferentiable f as follows:

Mλf (v) = inf
x∈Rn

[
f(x) +

1

2λ
‖v − x‖22

]

so that

Mλf (v) = f(prox
λf

(v)) +
1

2λ
‖v − prox

λf
(v)‖22

for all v in the domain of f . Then by the envelope theorem,

∇Mλf (x) =
1

λ
(x− prox

λf
(x))

or equivalently,

prox
λf

(x) = x− λ∇Mλf (x).

Thus one application of the proximal operator is equivalent to a gradient descent step of size λ

towards minimizing Mλf . This is also a gradient step towards minimizing f .

10



Theorem 2. For all λ > 0, f and Mλf have identical minimizers.

Proof. Observe that

inf
v
Mλf (v) = inf

v
inf
x

[
f(x) +

1

2λ
‖v − x‖22

]
= inf

x
inf
v

[
f(x) +

1

2λ
‖v − x‖22

]
= inf

x
f(x).

This suggests the following algorithm for minimization of f , known as proximal minimization.

We iterate towards a minimizer of f by the rule

x(k+1) = prox
λkf

(x(k))

where the (positive) step sizes {λk} are subject to
∑∞

i=0 λk =∞. This algorithm is somewhat less

than practical. In order to be preferred to simple gradient descent on f , it would need to be easier

to compute the proximal operator by minimizing f(x) + 1
2λ‖x− v‖

2
2 than taking the gradient of f .

The proximal gradient method, on the other hand, offers a more practical approach. If our

objective function is the sum of differentiable f and not necessarily differentiable g, then the

proximal gradient method algorithm iterates as follows:

x(k+1) = prox
λkg

(x(k) − λk∇f(x(k))) (2.3)

We will see how this scheme can be seen as a special case of majorization-minimization opti-

mization.
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Section 2.5

Majorization-minimization for linear inverse problems

We consider the connection between majorization-minimization and proximal gradient descent noted

in [5]. Suppose we have an inverse problem of type 2.1 where M is a linear operator and X is a

subset of RN . Further, we require that MTM is positive-semidefinite with largest eigenvalue at

most 1. One paradigm for solving such a problem is regularized least squares (RLS). We introduce

a regularization penalty function φ : X → R and seek a solution by

x∗ = arg min
x∈X

‖y −Mx‖22 + λφ(x)

with λ controlling the relative strength of the regularization. Separate data-fidelity and regularization

by f(x) = ‖y −Mx‖22 and g(x) = λφ(x), with F (x) = f(x) + g(x).

A majorization-minimization (MM) approach to minimizing a function F (x) operates by itera-

tively minimizing a substitute majorizer for F . A majorizer F̂ : X ×X → R must satisfy

F̂ (x, t) ≥ F (x) for all x, t ∈ X, (2.4)

F̂ (x, x) = F (x) for all x ∈ X. (2.5)

The choice of a majorizer is otherwise free. The algorithm updates by minimizing the majorizer

F (x, x(k)) with respect to x:

x(k+1) = arg min
x∈X

F̂ (x, x(k)).

12



Let us consider an approach to solving the RLS linear inverse problem described above using

MM. We note that for all x, t ∈ X,

f(x) = f(t) + f(x)− f(t)

= f(t) + ‖y −Mx‖22 − ‖y −Mt‖22

= f(t) + (‖y‖22 − 2〈Mx, y〉+ ‖Mx‖22)− (‖y‖22 − 2〈Mt, y〉+ ‖Mt‖22)

= f(t) + 2〈M(x− t),−y〉+ ‖Mx‖22 − ‖Mt‖22

= f(t) + 2〈M(x− t),−y〉+ ‖M(x− t)‖22 − 2〈Mt,Mt〉+ 2〈Mx,Mt〉

= f(t) + 2〈M(x− t),Mt− y〉+ ‖M(x− t)‖22

= f(t) + 2〈M(x− t),Mt− y〉+ (x− t)TMTM(x− t)

≤ f(t) + 2〈M(x− t),Mt− y〉+ ‖x− t‖22

where the inequality is obtained by replacing MTM with I since I ≥ MTM by assumption. We

then construct a majorizer F̂ by selectively majorizing f :

F̂ (x, t) = g(x) + f(t) + 2〈M(x− t),Mt− y〉+ ‖x− t‖22.

This calculation demonstrates that condition (2.4) is satisfied. It is trivial to verify that (2.5) is

satisfied by evaluating F̂ (x, x).

Observe that

‖x− (t−MT (Mt− y))‖22 = ‖x‖22 − 2〈x, t〉+ 2〈Mx,Mt〉

− 2〈Mx, y〉+R1(t, y)

= ‖x− t‖22 + 2〈M(x− t),Mt− y〉+R2(t, y)
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= F̂ (x, t)− g(x) +R3(t, y)

and

∇f(x) = ∇(‖y −Mx‖22) = 2MT (Mx− y).

We conclude that the MM algorithm is equivalent to the proximal gradient method (2.3) with

λk = 1
2 , as

x(k+1) = arg min
x∈X

F̂ (x, x(k))

= arg min
x∈X

[
g(x) + ‖x− (x(k) −MT (x(k) − y))‖22

]
= arg min

x∈X

[
g(x) + ‖x− (x(k) − 1

2∇f(x(k)))‖22
]

= prox
1
2
g

(
x(k) − 1

2∇f(x(k))
)

demonstrates.
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Chapter 3

Image processing

We introduce concepts from signal processing used in the representation and manipulation of digital

images. The sampling theorem, giving the conditions under which a bandlimited continuous signal

may be perfectly recovered from discrete samples, frames the study. Image resampling is discussed,

as well as interpolation kernels for situations when the sampling theorem does not hold. In particular,

we use polynomial splines as a class of especially popular interpolation kernels for image resampling.

We also review optical flow, a scheme for representing motion between frames in digital videos.

Section 3.1

Sampling and perfect recovery

Some of the essential theory of signal processing will be used throughout. We give the basics here;

a more thorough presentation can be found in [42].

Consider the case of a one-dimensional continuous-time signal, represented by the function

f : R→ R. In order to store and manipulate arbitrary signals using a computer, the signal must be

sampled at discrete points. Suppose that we are able to sample f with a uniform sampling distance

T ; that is, we can observe the data {f(nT )}n∈Z (we assume an infinite sampling grid D = TZ).

The problem of reconstructing f from its samples is general – demosaicing is merely one example

of a type of this problem.
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An important classical result in signal processing gives conditions under which f may be perfectly

recovered from its samples on D by convolution with the sinc kernel hT . We represent the samples

as a function fD : R→ R with

fD(x) =
∑
n∈D

f(nT )δ(x− nT ).

Lemma 1. With f and fD as above, we have

f̂D(ξ) =
1

T

∑
n∈Z

f̂

(
ξ − 2πn

T

)

Proof. We write fD as the product of f with a Dirac comb,

fD(x) = f(x)
∑
n∈Z

δ(x− nT ).

Taking a Fourier transform and applying the convolution formula,

f̂D(ξ) =
1

2π
f̂ ∗

(∫
R

∑
n∈Z

δ(x− nT )e−ix·dx

)
(ξ)

=
1

2π
f̂ ∗

(∑
n∈Z

e−inT ·

)
(ξ)

=
1

2π
f̂ ∗

(
2π

T

∑
n∈Z

δ

(
· − 2πn

T

))
(ξ)

=
1

T

∑
n∈Z

f̂

(
ξ − 2πn

T

)

where the second-to-last equality follows from the Poisson summation formula.
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Theorem 3 (Shannon-Whittaker). Suppose f : R→ R and supp f̂ ⊂ [−π/T, π/T ]. Then

f(x) = (fD ∗ hT )(x) =
∑
n∈Z

f(nT )hT (x− nT )

where

hT (x) =
sin(πx/T )

πx/T
.

Proof. We would like to take the inverse Fourier transform of the bandlimit function χ[−π/T,π/T ] as

follows:

1

2π

∫
R
χ[−π/T,π/T ](ξ)e

iξxdξ =
1

2π

∫ π/T

−π/T
eiξxdξ

=
1

2πix
(eixπ/T − e−ixπ/T )

= sin(πx/T )/(πx/T )

=: hT (x).

Although hT (x) is not an L1 function, the inversion can be made rigorous by extending the Fourier

transform to L2 functions. Thus we have that ĥT (ξ) = Tχ[−π/T,π/T ](ξ). With Lemma 1 and the

convolution theorem, we have

̂hT ∗ fD(ξ) = χ[−π/T,π/T ](ξ)
∑
k∈Z

f̂(ξ − 2πk/T ) = f̂(ξ).

Applying the inverse Fourier transform, we are finished.

Hence band-limited signals (those with bounded support in the frequency domain) may be, in

principle, perfectly recovered from countably many samples provided those samples are close enough

together, i.e. T is chosen small enough. In practice, we are not so fortunate as to have T as small
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as necessary. This produces the phenomenon of aliasing : If the signal f has support outside of

[−π/T, π/T ], then naively applying the Shannon-Whittaker recovery convolution produces

̂fD ∗ hT (ξ) = Tχ[−π/T,π/T ](ξ)f̂D(ξ)

= χ[−π/T,π/T ](ξ)
∑
k∈Z

f̂(ξ − 2πk/T ).

For any ξ, all frequencies of f̂ of the form f̂(ξ − 2πn/T ) will overlap in the summation, ruining the

reconstruction f̂D ∗ hT at ξ. In other words, the entire frequency bandwidth of f̂ is packed into the

[−π/T, π/T ] frequency band of the reconstructed fD ∗hT , producing a function which a priori may

produce completely incorrect frequencies.

Section 3.2

Resampling

Suppose we have a sampled image on the integer lattice

fD(x) =
∑
n∈Z2

f(n)δ(x− n)

and we wish to apply a spatial transformation to the image. This is very common situation in

computer graphics, as images often need to be transformed by resizing, rotating, flipping, translating,

or something else entirely. A fuller treatment can be found in [67]. Here we will do no more than

specify the transformation by an operator W : R2 → R2 relating coordinates in the original image

x to coordinates in the transformed, or warped, image, x′; thus Wx = x′. We wish to obtain a

18



warped image

gD′(x
′) =

∑
n∈Z2

g(n)δ(x′ − n).

We do so by the following procedure:

1. Interpolate a continuous f(x) from fD(x)

2. Define a resampling grid D′ in terms of the original coordinate space

3. Sample f(x) on D′ to obtain gD′(x
′)

For an interpolation kernel h and antialiasing kernel k, we have

f(x) = (fD ∗ h)(x)

g̃(x′) = f(W−1(x′)) = f(x)

g(x′) = (g ∗ k)(x′)

gD′(x
′) =

∑
n∈Z2

g(n)δ(x′ − n).

Our choice of h is made to provide a suitable recovery of the continuous signal f from the discrete

samples fD. The choice of k is made to prevent aliasing when sampling gD′ by bandlimiting gD′ to

the range determined by the sampling rate in accordance with Theorem 3.

We can combine the steps to obtain a direct relationship between gD′ and fD. For x′ ∈ D′, we

have

gD′(x
′) = g(x′)

= (g̃ ∗ k)(x′)

=

∫
R2

g̃(t)k(x′ − t)dt
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=

∫
R2

f(W−1(t))k(x′ − t)dt

=

∫
R2

(fD ∗ h)(W−1(t))k(x′ − t)dt

=

∫
R2

∑
n∈Z2

fD(n)h(W−1(t)− n)

 k(x′ − t)dt

=
∑
n∈Z2

fD(n)

∫
R2

h(W−1(t)− n)k(x′ − t)dt︸ ︷︷ ︸
:=ρ(x′,n)

(3.1)

=
∑
n∈Z2

fD(n)ρ(x′, n), (3.2)

the term ρ(x′, n) being the resampling kernel that provides, for each pixel of the resampled image

gD′ , the coefficients of the linear combination of pixel values in fD that calculate the resampled

pixel. Note that in the above formulation, the inverse warp W−1 is used to compute the resampling

kernel with an integral in the warped space. In the case that W is differentiable, we may make the

change of variables t = W (u) so dt = detD(W )(u)du and

ρ(x′, n) =

∫
R2

h(u− n)k(x′ −W (u)) detD(W )(u)du

so that the resampling kernel may be evaluated in the pre-warp space [67]. Presently, we are

interested in image resampling as it pertains to image registration with optical flow, wherein the

inverse warp W−1 is known and W itself is not necessary to compute; hence we compute the

rasampling kernel with (3.2). See Section 3.5 for full details.
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Section 3.3

Interpolation

We now discuss the selection of an interpolating kernel h to recover the continuous signal f(x) from

the samples fD(x) by

f(x) = (fD ∗ h)(x)

=

(∑
n∈Z

f(n)δ(x− n)

)
∗ h(x)

=
∑
n∈Z

f(n)(δn ∗ h)(x)

=
∑
n∈Z

f(n)h(x− n)

from which we see that an interpolation kernel h may be represented as a set of coefficients on the

grid D for combining the discrete samples of fD to obtain an interpolated value f(x). For simplicity,

we will consider the one-dimensional case. There are several ways of treating multidimensional

kernels, but the simplest is to consider separable kernels: H(x, y) = H1(x)H2(y), for which the

one-dimensional theory is sufficient.

By Theorem 3, a bandlimited signal f may be perfectly recovered from its samples by convolution

with the sinc function in the spatial domain. In practice, most signals sampled at a rate T are

have support in the frequency domain exceeding the bandlimit [−π/T, π/T ] required for perfect

interpolation with sinc. Sinc interpolation on a sample from this large class of signals would

produce a bandlimited interpolant which is guaranteed not to belong to the original class. There

are yet further difficulties: sinc has infinite support in the spatial domain, and has very slow decay:

hT (t) = O(1/t). To resolve these issues, a variety of apodization techniques have been proposed
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whereby sinc is truncated by multiplication with a finite support window [62]. Other means of

interpolating continuous signals from discrete samples not based on a truncation of the sinc filter

have also been proposed.

Section 3.4

Polynomial splines for interpolation

An extensive literature exists on polynomial splines for interpolation and approximation tasks (see

the surveys [55, 35, 9, 21]). For our present purposes, we will use a very limited portion of this

theory to explain common alternatives to apodized filters for interpolation.

In brief, polynomial splines are piecewise polynomial functions connected at a discrete set of

knots, with continuity requirements at these knots. The one-dimensional polynomial splines of order

l on the knot set X have

s ∈ Cl−1,

s ∈ Pl([xi, xi+1), x ∈ [xi, xi+1) ∀i ∈ I.

The knot set is used to denote those points at which we have available data samples. For digital

images, our samples form a regularly-spaced grid. This restriction on the knot set simplifies our

discussion.

A special class of polynomial splines have especially nice properties for computation and inter-

polation. These are the cardinal B-splines. A suitable description of the cardinal B-splines {Bk}∞k=0

22



for our present purposes is given recursively by

B0(x) = χ[− 1
2
,− 1

2
)(x)

Bk(x) = (B0 ∗Bk−1)(x), k > 0.

It is not difficult to show that the cardinal B-splines are in fact polynomial splines.

We note that the corresponding Fourier transforms of the cardinal B-splines are powers of the

sinc function.

B̂0(ξ) =

∫ ∞
−∞

χ[− 1
2
,− 1

2
)(x)e−2πiξxdx

=

∫ 1
2

− 1
2

e−2πiξxdx

=
eπiξ − eπiξ

2πiξ

=
sinπξ

πξ

= sinc(ξ)

so by the convolution theorem,

B̂k(ξ) = (sinc(ξ))k+1

thus a continuous function obtained from cardinal B-spline interpolation will not, in general, be

bandlimited.

Interpolating by convolution with B0 is known as nearest-neighbor interpolation. Although

extremely computationally simple, a function reconstructed with nearest-neighbor interpolation is

discontinuous and likely to create severe “pixelated” artifacts in the resampled image. Interpolation

with kernels B1, B2, and B3 is called linear, quadratic, and cubic (spline) interpolation respectively.
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The two-dimensional separable analogues are bilinear, biquadratic, and bicubic interpolation respec-

tively1. Of these, bilinear and bicubic interpolation are widely used in applications as a workable

compromise between efficiency and accuracy of interpolations. It is particularly useful that fast

GPU implementations of bilinear interpolation exist and are easily used through standard deep

learning libraries.

Section 3.5

Optical flow

Estimating the motion ocurring in a digital sequence of frames is important in computer vision,

with a diverse range of applications from video compression to autonomous driving. Of particular

relevance here is the use of optical flow for the task of image registration.

What constitutes motion? Humans can easily identify types of motion ocurring in videos natural

scenes – a person walking, the movement of the camera, a spinning top, and innumerable others.

Humans observe and understand this motion without deliberately scrutinizing every pixel of every

frame in order to determine which individual pixels moved where. Computers do not come equipped

with a robust visual system and must use the latter approach, known as optical flow, to keep track

of motion in video sequences.

We define optical flow as follows. Given two subsequent frames of a video sequence F 1, F 2 :

R2 → [0, 1], the forward optical flow from F 1 to F 2 is the operator ν : R2 → R2 such that ν(x)

gives the displacement vector from F 1 to F 2, i.e.

F 2(x) = F 1(x+ ν(x)). (3.3)

1In the literature, bicubic interpolation may refer to one of several cubic spline interpolation methods. We refer
the interested reader to [67] for a more thorough discussion.
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Equation (3.3) can be easily applied to images sampled on the discrete grid using the framework

of section 3.2 with W−1 = (I + ν), and F 1, F 2 the interpolated versions of discrete sampled frames

F 1
D, F

2
D. Optical flow can then be used to define a resampling grid D′ such that sampling the

interpolated F 1 on D′ gives another perspective on the scene represented by F 2
D computed from

the pixels of F 1
D by the resampling kernel. In general, neither the inverse optical flow ν−1 nor

the Jacobian D(ν) are available without additional computational cost, so the resampling kernel is

computed using (3.2). This application of optical flow is known as image registration, and is of use

when we have captured multiple noisy or corrupt images of some scene with some kind of motion

between frames as in burst photography or video sequences.

Stated in this way, optical flow is ill-posed or undefined for essentially all realistic video sequences.

Indeed, the definition operates on the unrealistic assumptions that the video sequence experiences

no change of lighting between frames, that there is no occlusion of objects in the sequence, and

that the intensity value of a pixel corresponds exactly to the motion of an object across frames.

Some approaches in the literature [57] use real-valued flow in order to account for sub-pixel motion,

resampling with a bilinear interpolation. Other approaches include with each flow an estimated

pixel-wise confidence, or probability that the computed flow is correct, at an additonal computational

cost [70, 65]. We discuss PWC-Net, a deep neural network for computing optical flow, in Chapter

5.
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Chapter 4

Deep convolutional neural networks

We introduce the class of popular computational models for data-driven function approximation

tasks called neural networks. Neural networks are parameterized models consisting of successive

applications of affine transformations and nonlinearities. The parameters specific transformations

used are learned from data by minimizing an objective function consisting of a loss term and a

regularization term over a training dataset. The objective functions of neural networks are not, in

general, convex, yet techniques from convex optimization are widely used to train neural networks.

We discuss the convolutional network architecture, which has been employed to great effect in signal

processing and image classification tasks. We review some of the mathematical literature on neural

networks, including the convolutional sparse coding framework for convolutional networks.

Section 4.1

Neural networks: overview

Neural networks are computational models that have lately achieved great success in a diversity

of technical areas, especially computer vision and natural language processing [38]. This success

is owed to a combination of advances in network design, the availability of large suitable datasets,

specialized hardware, and widespread scientific attention. Neural networks consist of multiple layers,

each of which computes features of the input data from the features of the previous layer using

an affine transformation followed by a nonlinearity. Networks with many layers (called deep) have
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the capacity to represent quite complicated relationships and features of data. In particular, by

restricting the linear portion of the affine transformations of each layer to be a convolution, the

resulting model is a convolutional neural network or CNN, introduced in [37, 36]. CNNs have been

incredibly successful empirically in achieving state-of-the-art results in image classification [34] and

many other computer imaging tasks (see [38] for a survey).

The use of deep neural networks for image classification gives an example: in order to accurately

compute the probability that an image is (say) a dog rather than a cat, the layers of a deep neural

network must compute very complicated features of a high-dimensional vector representing an image.

The first layer might compute features that detect edges in the image; the second layer might detect

simple shapes from the edges detected by the first layer; subsequent layers compute increasingly

intricate features. Ultimately, a classifier uses the highest-level features to compute the probabilities

that the image belongs to either class.

Deep learning refers to a general set of methods to learn from data the best features to compute.

Instead of hand-selecting which features are useful, a deep learning approach will approximate or

learn an optimal set of features with respect to some predetermined prediction or classification task,

given a sufficiently large representative dataset. This is known as training. For the above example,

a deep learning approach takes a dataset of properly labeled dog and cat images and trains a neural

network to compute those features which are capable of distinguishing between a dog image vector

and a cat image vector.

Deep learning with neural networks is limited by the availability of datasets (which usually

must be constructed by humans), the intense computational demands of the training process, and

the present domination of heuristic methods for network design. As of yet, there is no accepted

general-purpose theory for designing a neural network to solve some problem. A large mathematical

literature exists providing some theoretical results on the capabilities of neural networks, as well as
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frameworks for understanding the mathematically the functioning of neural networks (in particular,

CNN [43, 44, 48, 69, 66]).

Section 4.2

Neural networks: notation

A neural network is a parameterized function fθ : X → Y with a particular structure, capable

of performing regression or classification tasks. The structure of a neural network is a heavily

simplified mathematical approximation of animal neural activity, and consists of a sequence of

layers of neurons followed by a nonlinear activation function, connected by weight matrices and

added bias vectors. A one-layer neural network fθ : Rn → Rm is defined by fθ(x) = a(Wx+b), where

W ∈Mm×n, b ∈ Rm, θ = {W, b}, a : R→ R and the nonlinear function a is applied element-wise

to the vector Wx+ b. More complicated networks are formed by adding hidden layers whose output

are not the final product of the network. Given weight matrices W = {Wi ∈Mni×ni−1}ki=1 and bias

vectors b = {bi ∈ Rni}ki=1 summarized by θ = (W, b), and activation functions {ai : R→ R}ki=1, we

define a k-layer neural network by:

f(x; θ) = (fk ◦ fk−1 ◦ · · · ◦ f1)(x; θ); fi(x; θ) = ai(Wix+ bi) (4.1)

where n0 = n, nk = m.

Activation functions play the crucial role of introducing nonlinearities into what would otherwise

be a purely affine function, thus enabling neural networks to internally represent complicated features

of data. We require that a neural network f be differentiable almost everywhere with respect to its

parameters, whence the activation functions used by f must be differentiable almost everywhere.
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Common choices of activation function include the Rectified Linear Unit (ReLU), a(x) = max{0, x}

[46], hyperbolic tangent a(x) = tanh(x), or sigmoid σ(x) = (1 + e−x)−1 functions.

The term network architecture is used to describe f together with any constraints on the

parameter set. The network defined by (4.1), has a fully connected architecture with (k− 1) hidden

layers. If we constrain the weights to be banded Toeplitz matrices, the resulting architecture would

be convolutional with k convolutional layers1. Another common network architecture involves the

use of skip or residual connections. As an example, consider

fres(x; θ) = (fres, k ◦ fres, k−1 ◦ · · · ◦ fres,1)(x; θ);

with

fres,i(x; θ) = x+ ai(Wix+ bi),

for a network architecture that employs skip connections, and

fres,i(x; θ) = x− ai(Wix+ bi),

for a residual network architecture. Both cases must obey dimensionality constraints so that n =

m = ni for every i. The selection of a particular network architecture is a matter of experimentation,

experience, and the network’s intended purpose.

1Multiplication by a banded Toeplitz matrices represents the convolution of a vector with a filter; see Section 4.6
for a fuller discussion of convolutional networks.
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Section 4.3

Loss functions and regularization

Provided a network architecture f , it remains to learn a robust parameter set θ from a training set.

The training set for a supervised learning problem consists of sets TX = {xi}i ⊂ X, TY = {yi)}i ⊂ Y

of input vectors xi and ground truth vectors yi := u(xi) for an unknown function u : X → Y . The

goal of supervised learning, given f , is to select θ such that fθ(x) ≈ u(x) for x ∈ X, especially for

x /∈ TX . Consider y∗ = u(x∗) for x∗ /∈ TX , and suppose that we have trained f on the training

data to obtain fθ. If we consider the trained neural network as a function of the training set

fθ(x) = f(x;Tx), we see that the trained network acts as a point estimator ŷ∗ for the unknown,

fixed quantity x∗. This viewpoint requires that we treat TX as a random variable sampled from a

data-generating distribution ψ. In this way, we may apply the bias–variance tradeoff, namely,

Eψ
[
(y∗ − f(x∗;Xt))

2
]

= (y∗ − f(x∗;Xt))
2 + Vψ(f(x∗;Xt)),

demonstrating that the generalization error consists of a squared bias term and the variance of the

network’s prediction with respect to the training data set. It is thus important when training a

network that we do not overfit, reducing prediction error on the training set TX , TY at the cost

of a high variance in the network’s predictions for x /∈ TX . Overfitting may result from the naive

minimization of a distance function ` in prediction space over the training set

θ∗ = arg min
θ

∑
i

`(yi, fθ(xi)).

To this end, various regularization techniques have been proposed and adopted for the training of

deep neural networks. By choosing a regularization function on the parameter space Θ : Ω→ R+
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and a regularization strength λ ∈ R+, we obtain an objective function L : Y ×X × Ω→ R+ given

by

L(y, x, θ) = λΘ(θ) +
∑
i

`(yi, fθ(xi)). (4.2)

From (4.2) we seek the optimal parameters θ∗ by

θ∗ = arg min
θ

∑
i

L(yi, fθ(xi, θ)). (4.3)

Section 4.4

Optimization algorithms

Deep learning depends upon the robust selection of the parameters of a network by (4.3). This

optimization process is called training the network. The following principles guide the training of

neural networks:

1. A neural network f(x; θ) is differentiable almost everywhere with respect to its parameters θ;

the gradient of the objective function ∇θL(xi; θ) can be computed by automatic differentiation

using numerical libraries.

2. The parameter space Ω is very high-dimensional, commonly consisting of hundreds of thou-

sands or millions of parameters.

3. The size N of the training set Tx, Ty may be large or small in comparison to the dimensionality

of θ depending on the specific application domain and available data.

4. Overfitting the training set produces a useless network.

31



We are interested in the minimization of the high-dimensional objective function L with respect

to θ. By principle two, second-order methods that require the computation of a Hessian matrix

is infeasible because of the prohibitively high dimension of Ω. Instead, first-order optimization

methods are in widespread use. Of these, the simplest is gradient descent. The parameters are

iteratively updated by the rule

θ(t+1) = θ(t) − η

N

N∑
i=1

∇θL(yi, xi; θ
(t))

where η is the learning rate, a hyperparameter not included with the learned parameters θ. For

gradient descent, each step of training requires computing the gradient of the objective function

evaluated at each of the N data points, which is expensive to compute when N is large. Two related

alternatives are stochastic gradient descent and mini-batch gradient descent.

Stochastic gradient descent updates the model parameters based of the gradient evaluated at a

single data point xi(t) ∈ TX , selected uniformly at random at each step.

θ(t+1) = θ(t) − η∇θL(yi(t) , xi(t) ; θ
(t))

Computing the gradient of the objective function at a single data is N times less expensive than

computing it for the entire dataset, leading to an N -fold increase in the rate of parameter updates.

This comes at a penalty to the accuracy of the updated parameters over the whole dataset. As a

widely popular compromise between iteration frequency and update accuracy, mini-batch gradient

descent randomly partitions the training data set into subsets of size B (possibly repeating some

data), and successively updates parameters over these “mini-batches”.

More sophisticated optimization techniques than the stochastic gradient descent have been

empirically observed to produce faster convergence to an optimal parameter set. Momentum-based
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methods bias parameter updates in favor of a term accumulating past gradients called momentum.

Classical momentum [50] updates by

m(t+1) = βm(t) −∇θf(x; θ)

θ(t+1) = θ(t) +m(t+1)

If we assume that ∇θ is constant, it is easy to see that m(t) = −∇θ
∑t

i=1 β
i−1, so

lim
t→∞

m(t) = − ∇θ
1− β

,

which gives a 1
1−β speedup over stochastic gradient descent2. Nesterov accelation, proposed in [58]

for neural network optimization as a reformulation of work by Nesterov [47], updates thus:

m(t+1) = βm(t) −∇θf(x; θ + ηm(t))

θ(t+1) = θ(t) + ηm(t+1)

where m(0) = 0 and β ∈ [0, 1) controls the rate of momentum3.

Another family of optimization techniques adapts the learning rate for each individual component

of the parameter vector θ. Adam [30] is a popular example of this, with update computed by

estimating the first and second moments of the update vector. With initialization m(0) = v(0) = 0,

fixed β1, β2 ∈ (0, 1), and initial learning rate α, Adam updates the gradient according to Algorithm

14.

2It is of course implausible that ∇θ is constant over all of Ω, but if the loss surface is smooth, then for step sizes
small enough the gradient of the loss will be approximately constant over some local region of Ω.

3Although formulas here are given for updating parameters from a single sample for simplicity, in practice the
mini-batch variation of these algorithms are in wide use.

4�,�, and
√

operate element-wise on vectors in the sense of Hadamard.

33



Algorithm 1: Adam algorithm for adaptive learning rate optimization [30]

Data: β1, β2 ∈ (0, 1): moment estimation parameters, α: base learning rate, θ: network
parameter initialization, ε > 0: stability parameter

m(0) = 0

v(0) = 0

θ(0) = θ
t = 1
while training do

m(t+1) = β1m
(t) + (1− β1)∇θf(x; θ)

v(t+1) = β2v
(t) + (1− β2)∇θf(x; θ)�∇θf(x; θ)

m̂(t+1) = m(t)/(1− βt1)

v̂(t+1) = v(t)/(1− βt2)

θ(t+1) = θ(t) − αm̂(t+1) � (
√
v̂(t+1) + ε)

end

Exponential moving averages compute biased estimates of the first and second moment, m(t), v(t),

which are then corrected by scaling factors which correct for the initialization of these terms to 0.

[30] provide a convergence analysis for Adam given a convex cost function L. In practice, Adam is

widely used to train convolutional neural networks which are non-convex in general.

Section 4.5

A note on convexity

A function f : Rn → R is convex if

f(γα+ (1− γ)β) ≤ γf(α) + (1− γ)f(β) ∀α, β ∈ Rn, γ ∈ [0, 1].

There exists an extensive literature on the optimization of convex functions which one may wish to

apply to the optimization of neural networks. Certainly neural networks, which are valuable precisely

for their ability to approximate arbitrary unknown functions [11], are not convex with respect to
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their data x. However, we show that the objective functions of neural networks are not convex

with respect to the network paramaters θ either. Many optimization algorithms and theoretical

results that apply to convex functions are not, therefore, rigorously justified in their application

to optimizing the parameters of a neural network. Empirical work demonstrates nevertheless that

convex optimization techniques can yield impressive results when used to optimize neural network

parameters.

Why are the objective functions of neural networks non-convex? The composition of convex

functions is not, in general, convex [7], but we provide a very simple example in which convexity is

violated.

Theorem 4. The loss function of a neural network is not, in general, a convex function of its

parameters.

Proof. Consider a neural network network given by

f(x;w11, w12, w21, w22) = w21ρ(w11x) + w22ρ(w12x)

x,w11, w12,w21, w22 ∈ R

where ρ(z) denotes max{0, z}, with squared error objective function

L(y, x, w11, w12, w21, w22) = (y − f(x;w11, w12, w21, w22))2

and training set consisting of a single sample x0 = a, y0 = a for a > 0. Then,

L(a, a; 1,−1, 1,−1) = (a− (ρ(a)− ρ(−a)))2 = 0

L(a, a;−1, 1,−1, 1) = (a− (−ρ(−a) + ρ(a)))2 = 0
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L(a, a; 0, 0, 0, 0) = (a− 0)2 = a2 > 0

Thus for α = (a, a, 1,−1, 1,−1)T , β = (a, a,−1, 1,−1, 1)T , and γ = 1
2 ,

L(γα+ (1− γ)β) = L(1
2α+ 1

2β) = L(a, a, 0, 0, 0, 0) = a2

while

γL(α) + (1− γ)L(β) = 1
2L(α) + 1

2L(β) = 0.

Hence L is not a convex function of its weights {wi,j}.

By Theorem 4, we have no a priori guarantee that convex optimization techniques like gradient

descent will converge to a global minimum of f(x; θ) instead of a saddle point or local minimum.The

choice of initial weight parameters (initialization) may influence the point to which these algorithms

converge. For our present purposes, we will always employ the initalization given by [24] unless

stated otherwise.

Section 4.6

Convolutional neural networks

Convolutional neural networks (CNNs), introduced in [37, 36], have been responsible for some of

the most remarkable achievements of deep learning [38]. A CNN is a neural network with the

constraint that the weight matrices W must perform discrete cross-correlations across their input.

This constraint allows CNNs to exploit the inherent self-similarity of images, video, audio, and
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text, while requiring far fewer parameters than an equivalently deep fully-connected neural network.

Nonlinearities between layers of the network are still used.

A convolutional layer is specified by the number of channels n of its input and a set of m K×K

filter banks. We can represent the ith filter bank by a set of K × K matrices (called filters, or

kernels) {φi,j}nj=1. The output of a convolutional layer is a set of matrices {Yi}mi=1 related to the

input set of matrices {Xj}nj=1 by

Yi =
m∑
j=1

Xj ∗ φi,j

where ∗ denotes discrete cross-correlation in two dimensions, i.e.

(Xj ∗ φi,j)[a, b] =

K1∑
h=1

K2∑
w=1

Xj [h+ a,w + b]φi,j [h,w]

for those a, b indexing Yi. Hence each output channel Yi of a convolutional layer is a sum of discrete

2d cross-correlations between each of the n input channels and its corresponding filter in the ith filter

bank. It is helpful to think of a filter bank as a 3d “block” of stacked filters, which convolves across

the 3d “block” of input channels computing inner products at each increment of the convolution.

Each block inner product computes a single entry of Yi.

The discrete cross-correlation of a matrix X ∈ RN1,N2 with a kernel φ ∈ RK1,K2 produces a

matrix in RN1−K1+1,N2−K2+1. This kind of dimensionality reduction is usually undesirable, and

hence the input channels to a convolutional layer are usually padded with the appropriate number

of zeros around their border. This operation makes little sense when thinking about matrices as

linear transformations, but considerably more sense when a matrix simply represents a grid of pixel

values. To avoid asymmetric padding, it is common to only use odd-sized kernels in CNN layers.

Note that although in this notation, a CNN f operates on a set of matrices X to produce another

set of matrices Y , it is for convinence that we pursued this formalization. A two-dimensional
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convolutional layer can be formulated in terms of matrix multiplication in at the cost of easy

comprehensibility; we omit the construction here. In one dimension, it is easily seen how the

discrete cross-correlation of vectors is equivalent to matrix multiplication using Toeplitz matrices.

The Toeplitz matrix of a kernel φ ∈ Rk for inputs in Rn is given by

T (φ|n) =



φ[1] . . . . . . φ[k] 0 . . . . . .

0 φ[1]
. . .

. . . φ[k] 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 . . . . . . φ[1] . . . . . . φ[k]



so that T (φ|n) ∈ R(n−k+1)×k and

x ∗ φ = T (φ|n)x

where ∗ denotes discrete cross-correlation. Alternatively, we may consider the non-circular structured

Hankel matrix of x with respect to the kernel φ,

H(x|k) =



x[1] . . . x[k]

x[2] . . . x[k + 1]

...
. . .

...

x[n− k + 1] . . . x[n]


∈ R(n−k+1)×n

and thus

x ∗ φ = H(x|k)φ.

We note that [69] have developed a theory of deep convolutional framelets to investigate deep

convolutional neural networks within the context of solving inverse problems, finding conditions
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under which perfect recovery from an input signal under a CNN coding is possible and investigating

the role of ReLU nonlinearities and skip connections.

Section 4.7

Theoretical work on neural networks

As yet, there is no comprehensive, standard mathematical theory of deep neural networks, despite

a proliferation of work towards this end. Neural networks have been studied from a variety of

mathematical viewpoints, including approximation theory, wavelet theory, and the theory of sparse

representation. Convolutional neual networks have, in particular, received much attention for their

astounding recent applications in image processing and classification. We will review two select

examples from this mathematical literature here and in Section 4.8; a comprehensive review is out

of the scope of this work.

Empirical demonstrations that neural networks can successfully learn approximations of many

kinds of unknown functions from data samples has been accompanied by a large literature of

approximation theoretic results. We limit ourselves to a single, important example. In [11], Cybenko

showed that for any continuous function on the unit cube g : [0, 1]n → R and ε > 0, there exists a

two-layer neural network f

f(x) = W2(σ(W1x+ b)), W1 ∈ Rm×n,W2 ∈ R1×m

such that

sup
[0,1]n

|f − g| < ε
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where σ is any fixed continuous sigmoidal function, i.e. limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1.

This is the universal approximation property of neural networks. Unfortunately, this result gives

no bound on the width m of the hidden layer or indeed any relationship between an optimal m

and the properties of g. Further, it is the case in practice that successful neural network are much

deeper than two layers. Recent work investigating multi-layer networks and a review of earlier such

work can be found in [6].

Section 4.8

Convolutional sparse coding and CNNs

Papyan et al. observe [48] significant connections between CNN and the proposed convolutional

sparse coding (CSC) scheme in the sparse representation literature. Suppose we have a signal

X ∈ RN and a dictionary D ∈ RN×M with M ≥ N and normalized columns. The sparse coding

problem is to find an optimally sparse signal Γ to represent X over D:

Γ∗ = arg min
Γ

‖Γ‖0 s.t. DΓ = X

with ‖ · ‖0 counting the number of non-zero entries of its vector argument. A computationally

tractable relaxation of the problem is basis pursuit, which employs the `1 norm:

Γ∗ = arg min
Γ

‖Γ‖1 s.t. DΓ = X

If a sparse representation has ‖Γ‖0 < 1
2(1 + 1

µ(D)), then the representation is unique and basis

pursuit can recover it5[48]. Approximate solutions to the sparse coding and basis pursuit problems

5Define the mutual coherence by µ(D) = maxi 6=j |dTi dj |
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are given by the hard and soft thresholding schemes

Γ∗ = arg min
Γ

‖Γ−DTX‖22 + β‖Γ‖0 (hard threshold) (4.4)

Γ∗ = arg min
Γ

‖Γ−DTX‖22 + β‖Γ‖1 (soft threshold) (4.5)

which admit closed form solutions Hβ(DTX) and Sβ(DTX) respectively, using the hard and soft

thresholding operators

Hβ(x) =


x |x| > β

0 otherwise

Sβ(x) =



x+ β x < −β

x− β x > β

0 otherwise.

When we require (without loss of generality) that the approximate sparse encoding have positive

entries, the soft thresholding operator becomes the ReLU function ρ(x− β).

Convolutional sparse coding imposes the requirement that D must be convolutional, such that

each local patch xi ∈ Rn of X is recovered by Ωγi, where γi ∈ R(2n−1)m is a local stride in Γ

and Ω ∈ Rn×(2n−1)m consists of rows i through i + n − 1 of D, with zero columns removed. If

D is convolutional, Ω is identical across i. This structure imposes that each xi is the discrete

cross-correlation of γi with the m filters encoded in Ω. Enforcing a convolutional dictionary lessens

the complexity of finding a sparse representation for large signals without reducing the signal to

a set of unconnected patches. The multi-layer convolutional sparse coding (ML-CSC) applies the

CSC scheme recursively on the generated representations. The deep coding problem DCPλ, given a
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sequence of dictionaries {Dk}Kk=1 is to find a set of sparse representations {Γi}Ki=1 such that

Γk−1 = DkΓk, 1 ≤ k ≤ K, ‖Γk‖s0,∞ ≤ λk (4.6)

where Γ0 := X and ‖ · ‖s0,∞ = maxi ‖γi‖0 is the local sparsity norm `0,∞, taken across strides γi

in the argument. If the input signal is corrupted by noise Y = X + E, then deep coding problem

becomes DCP ελ, with (4.6) replaced by

‖Γk−1 −DkΓk‖2 ≤ εk, 1 ≤ k ≤ K, ‖Γk‖s0,∞ ≤ λk. (4.7)

The hard/soft thresholding approximate solutions (4.5, 4.4) can be extended to ML-CSC to obtain

the layered thresholding. In particular, for the soft thresholding operator with thresholds {βk}Kk=1the

approximate solutions are

Γ̂k = Sβk(DT
k Γk−1), 1 ≤ k ≤ K (4.8)

which bears a striking resemblence to the definition of a neural network (4.1). In particular, for a

one-dimensional CNN with K layers and convolutional matrices given by {W T
k },

fk = ReLU(W T
k fk−1 + bk), 1 ≤ k ≤ K.

Papyan et al. [48] conclude that the ML-CSC basis pursuit by layered thresholding is equivalent to

the CNN forward pass (up to a discrepancy in the thresholds caused by the CNN bias vectors {bk}),

and prove a number of theoretical guarantees for the above approaches which we briefly summarize.

We may wish to have guarantees about the uniqueness of optimal DCPλ representations, and

the stability of optimal representations in the presence of noise. Uniqueness of representations {Γk}
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satisfying DCPλ for a signal X is guaranteed under the sparsity condition

‖Γi‖s0,∞ ≤ λk ≤
1

2

(
1 +

1

µ(Dk)

)
, 1 ≤ k ≤ K.

A bound for the error between the true representations {Γk} of a signal X and the representations

{Γ̂k} of the noisy Y = X + E is provided. This bound is unfortunately exponential in the number

of layers:

‖Γk − Γ̂k‖22 ≤ ε2
k∏
j=1

4

1− (2‖Γj‖s0,∞ − 1)µ(Dj)
,

with ‖E‖2 ≤ ε.

Although layered thresholding gives only an approximation of the optimal representations, [48]

prove that with local sparsity assumptions on the optimal representations that depend on mini |Γ[i]|
maxi |Γ[i]| ,

the layered thresholding approximate solutions have correct support and bounded `2∞ error. The

layered soft thresholding requires stricter local sparsity assumptions and has a less bounded `2,∞

error. Using ReLU for CNN nonlinearities, which corresponds to the soft thresholding operator

under this analysis, is less well-suited for the approximation of optimal sparse representations across

layers compared to hard thresholding.

Instead of seeking approximately optimal representations with thresholding-based solutions,

Papyan et al. propose the layered basis pursuit to recover the optimal representations themselves.

This scheme has

Γ̂k = arg min
Γk

‖Γk‖1 +
1

2ξk
‖DkΓk − Γ̂k−1‖2 (4.9)

with constants {ξk} proportional to the level of corrupting noise. Note that (4.9) is a version of

the proximal operator of Section 2.4 for layered pursuit. Papyan et al. propose the iterative soft
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thresholding algorithm for the solution (4.9) by

Γ̂
(t)
k = Sξk/ck

(
Γ̂

(t−1)
k +

1

ck
DT
k (Γ̂k−1 −DkΓ̂

(t−1)
k )

)

and give conditions for when layered basis pursuit is guaranteed to recover optimal representations,

as well as an (exponential in depth) bound on errors for noisy signals [48].

This framework provides some illuminating connections between CNNs and the body of work

on sparse representations, but suffers from several limitations. A trained CNN can be expected

to have learned convolutional dictionaries for sparse coding only when a suitable regularization is

imposed such as the `1 norm on filter coefficients – but successful networks exist that do not impose

sparsity. The role of skip connections in existing successful CNN architectures is not addressed,

and the relationship between the number of filter channels per layer and CNN effectiveness is not

explored.
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Chapter 5

Demosaicing

Color image demosaicing, one of the first steps in the digital image formation pipeline, consists of

the interpolation of unobserved color measurements on the pixel grid of a digital camera. Many

commercially available cameras rely on some demosaicing algorithm to recover usable pictures from

light measurements. There is a substantial academic literature proposing demosaicing techniques,

including some recent work on deep neural networks for demosaicing.

We introduce the problem of color image demosaicing. A model of digital color image formation

is presented along with the basics of colorimetry necessary to understand the demosaicing literature.

At its core, demosaicing is the interpolation of missing information about the color channels of an

acquired digital image. The missing information is inherent in the process used to measure colored

light using a color filter array in digital cameras. Traditional heuristic interpolation methods for de-

mosaicing are presented, as well as recent methods using deep convolutional networks. Demosaicing

can be modeled as an inverse problem; we review a deep learning architecture designed around this

principled observation that has been proposed. The problem of temporal or multi-frame demosaicing

is presented. Finally, we review a recent successful application of convolutional networks to the

problem of computing optical flow.
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Section 5.1

Digital color image formation

Digital cameras are designed to create a discrete, digital representation of a natural scene from

a brief exposure to the photons that enter the camera during the interval of exposure. Entering

photons are refracted by a lens before passing through the open shutter, where they are absorbed

by charge-coupled device (CCD) image sensor1. The CCD consists of a grid of capacitors, each of

which has an electron potential well. Each capacitor on the CCD grid accumulates electrons in its

potential well in proportion to the photons illuminating the capacitor. Once exposure is complete,

the pattern of electrons in the potential wells of the grid is converted into a digital signal that can

be used by subsequent digital processing components of the camera. For a more thorough reference

on the material presented in Sections 5.1, 5.2, and 5.3, see [39].

The digital image acquisition pipeline is multi-stage and varies from one camera manufacturer

to the next. Each camera must be calibrated so as to counteract the complicated noise inherent in

CCD measurement, any defects or nonuniformities in the sensor, black-level correction and white

balancing, color correction, and demosaicing, our present subject. Before addressing demosaicing,

it is necessary to address the basics of color.

Section 5.2

Light, color, and colorimetry

Light is an highly complex natural phenomenon. We will simplify our discussion of light to suit

our present needs, with the understanding that our treatment is highly incomplete. Visible light

1CMOS sensors are an alternative, but we will assume a CCD camera in the following.
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refers to an electromagnetic waves with temporal frequencies in the range 4× 1014 Hz to 7.8× 1014

Hz. Light carries energy which is always absorbed in discrete quantities hν, where h is Planck’s

constant and ν is the frequency of the light.

The human visual system continually translates visible light that illuminates the human eyes

into the qualitative perception in the mind called sight. Human perception of color is highly context-

dependent – it is not the case that light of a given frequency will appear as the same color to a

human observer.

The human eye contains four kinds of photoreceptive units: rods and three types of cones. Rods

are responsible for light perception in low brightness situations, while cones are responsible for light

perception in bright situations. The different kinds of photoreceptors in the eye are responsive

to different wavelengths of light. Rods are more sensitive to high-frequency light than are cones.

The three types of cones also vary in their responses to the spectrum of light. S, M, and L cones

are most sensitive to high, medium, and low light frequencies respectively (S, M, and L stand for

short, medium, and long wavelengths). The visual perception of color is created from the different

responses of the three types of cones to light.

The field of colorimetry seeks to specify the physical aspects of color stimuli using the framework

of vector spaces. Colorimetry operator on the receptor-level theory: a color stimulus is completely

specified by its effects on human photoreceptors, and in particular, the three types of cones. Col-

orimetry was established before it was technically possible to directly measure human cone responses,

and so instead relied upon psychophysical color matching experiments. In such an experiment, three

primaries are selected, (R), (G), (B) such that the combination of one unit of radiant power from

each primaries results in “equal-energy white”, which has equal radiant power at every visible

wavelength.2 A color stimulus (C) is then projected onto one half of a viewing field, and a linear

2The term radiant power describes the energy flow per unit time through a point in a given direction caused by
light.
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Figure 5.1: A equally-spaced gradient in sRGB space (top) and an equally-spaced gradient in
linRGB, converted to sRGB for display (bottom)

combination of the primaries is projected onto the opposite half. The coefficients R,G,B of the

combination of primaries are adjusted until the relationship

(C) ≡ R(R) +G(G) +B(B)

holds, with ≡ denoting the perceptual equivalence of both halves of the viewing field. When

the stimulus (C) = (C)(λ) consists of monochromatic light of wavelength λ, the color matching

functions ar(λ), ag(λ), ab(λ) of the primaries are obtained by varying λ:

(C)(λ) ≡ ar(λ)(R) + ag(λ)(G) + ab(λ)(B)

The standard color space for use on computer monitors and is known as sRGB space [2]. The

representation of color in sRGB depends on the ITU-R BT.709 reference primaries, with an addi-

tional correction for the nonlinear response of computer monitor displays. Suppose a signal (C)

has chromaticity coefficients R,G,B with respect to the sRGB primaries. The vector [R G B]T

gives the linear RGB (linRGB) representation of (C). The sRGB standard instead represents (C)

as [R′ G′ B′]T where

X ′ =


X/12.92 X ≤ 0.003040

1.055X1/2.4 − 0.055 X > 0.003040
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Figure 5.2: A 6x6 patch of a Bayer color filter array

for X ∈ {R,G,B}. This fact is important for working with digital image formats – if an image

is encoded as sRGB, the color coefficients of each pixel are actually a nonlinear function of the

chromaticity coefficients with respect to colorimetric primaries. Figure 5.1 illustrates the danger of

ignoring the distinction between sRGB and linRGB space. The linear gradient created by equally-

spaced values in sRGB space appears choppy and broken, while the linear gradient in linRGB

space that is then converted to a (nonlinear) sRGB gradient appears smooth. When performing

interpolation tasks, therefore, it is important to consider the choice of color space to work in.

Section 5.3

The problem of demosaicing

Much like the human eye uses three kinds of cones to perceive color, each sensitive to different

spectra of light, a digital camera employs a color filter array (CFA) overlayed on top of its grid of

capacitors to capture color information. The CFA is a grid of differently photosensitive materials

that are sensitive to specific wavelengths of light. The Bayer CFA, a common choice of color filter

array, consists of two rectangular grids of pixels sensitive to red and blue light, and a checkerboard

grid of pixels sensitive to green light (see Figure 5.2). The Bayer CFA samples the green channel

at twice the rate as the red and blue channels. The human visual system is most sensitive to
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mid-spectrum light, and so it is reasonable to reserve the highest sampling rate of the CFA for green

(mid-spectrum) light. Because of this, the green channel sampled by the Bayer CFA is commonly

referred to as the luminance component, while the red and green channels are referred to as the

chrominance components. Although there exist color systems that explicitly formulate color channels

as luminance and chrominance (for example the NTSC YIQ color system used in color television),

this is not what is meant by luminance and chrominance components in reference to a Bayer CFA.

Instead, the terms are used to denote that the green channel contains the better-sampled brightness

(luminance) information, while the red and green channels contain the relatively worse-sampled

color (chrominance) information. Indeed, Bayer used the luminance / chrominance vocabulary in

his original patent for the CFA that bears his name [4].

When taking a picture, a digital camera using a Bayer CFA is exposed to the light of some real-

world scene but only captures the red, green, and blue linRGB coefficients according the Bayer CFA

grid. To represent the image digitally, all three linRGB coefficients are needed for each pixel. In this

way, 2/3 of the total required information is not recorded. Furthermore, the third of information that

is recorded is corrupted by noise from the CCD. Demosaicing is the task of generating the 2/3 of

missing information from the measured 1/3 of (noisy) information. Often, demosaicing is discussed

along with denoising, the task of correcting the noisy measurements. Together, demosaicing and

denoising constitute a crucial segment of the image capture pipeline.

A model for the statistics of the noise corrupting the Bayer measurements is given by Foi et al.

[17]. The distribution of the noise n is decomposed into a signal-independent Gaussian component

and a signal-dependent Poisson component. The Poisson term accounts for photon noise (which is

proportional to the strength of the signal at a given pixel), whereas the Gaussian term accounts for

background noise that applies across the image independent of signal level. This combined noise term

can be approximated by a signal-dependent Gaussian distribution. The joint demosaicing-denoising
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Figure 5.3: A demonstration of demosaicing by bilinear interpolation

literature often uses a Gaussian approximation of the noise term. We will be treating the denoised

or non-noisy case in Chapter 6, but include this discussion to acknowledge the incompleteness of

demosaicing without taking noise into consideration.

Section 5.4

Demosaicing by interpolation

Let us consider a very simple approach to the demosaicing problem. Given a mosaiced image Mx,

we separately interpolate each of the three color channels of Mx using bilinear interpolation (see

Figure 5.3). The result for a very high frequency image patch is shown in Figure 5.4. Distracting

false color artifacts are noticeably present when using bilinear interpolation to demosaic high

frequency images, although in low-frequency patches bilinear interpolation performs adequately.

Indeed, separate bilinear interpolation across each of the three color channels completely ignores

the information that the three color channels contain jointly.
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(a) Ground truth patch (b) Bayerized patch (c) Bilinear interpolation

Figure 5.4: Demosaicing by bilinear interpolation

However, there exist more sophisticated interpolation-based demosaicing methods in the liter-

ature. We will briefly review some of them here. The review papers [41] [45] [20] contain a more

exhaustive overview of traditional interpolation-based demosaicing methods.

In [10], hue-based interpolation heuristics are considered. The hue at a pixel x relates the

value of a chrominance component at Rx to the luminance component Gx by either Rx/Gx or

logRx − logGx. Hue-based methods operate on the assumption that hue channels are smoother

than color channels. First, the missing pixels of the green channel are interpolated using bilinear

interpolation. From this full-resolution luminance component, the hue values for the observed

chrominance components may be calculated. Then, the missing red and blue hues are bilinearly

interpolated from the calculated hues, and converted back to color channel components.

Adams [1] extends beyond this to address the reality that interpolating colors across edges in

an image creates zipper artifacts, as we observed in Figure 5.4. A heuristic adaptive interpolation

methods is proposed that first approximates the horizontal and vertical derivatives of the luminance

component, and interpolates either horizontally, vertically, or bilinearly depending on whether

the horizontal and vertical derivatives exceed a set threshold. This method has the advantage of
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handling edges slightly better than plain bilinear interpolation or bilinear hue interpolation while

remaining computationally simple.

An interesting recent development in the demosaicing literature has been the introduction of

deep convolutional neural networks trained to demosaic images. Gharbi et al. [19] propose a

network that uses a 1-channel, 2-dimensional Bayer mosaic M as input. Prior to convolutions, M

is rearranged into a four channel image at half the spatial resolution by

F 0
c (x, y) = M(2x+ (c mod 2), 2y + bc/2c)

where c ∈ {1, 2, 3, 4} and (c mod 2) refers to the integer remainder of dividing c by 2. This operation,

sometimes referred to as compression, effectively increases the range of subsequent convolutions

performed across the feature channels. A K ×K convolutional kernel applied to the compressed

image has an effective range of 4K × 4K pixels in the input space. A fifth channel is included to

explicitly model the variance σ of the zero-mean Gaussian noise corrupting the input sample M ,

F 0
5 (x, y) = σ

Gharbi’s network processes the compressed image through D convolutional layers with ReLU

nonlinearities,

F dc = ρ

bdc +

Wd−1∑
c′=1

wdc,c′ ∗ F d−1
c

 c ∈ {1, . . . ,Wd}, d ∈ {1, . . . , D}

where F dc denotes the cth channel of the dth layer output, bdc is the 2-dimensional bias for the cth

channel of the dth layer, and {wc,c′}
Wd−1

c=1 are K ×K convolutional kernels that convolve with each

of the Wd−1 channels of F d−1, the output of the previous layer. The input to each convolution
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layer is padded by K−1
2 pixels to prevent shrinkage in the spatial direction. The ReLU nonlinearity

ρ(x) = max(0, x) is applied element-wise to its input. The (D+ 1)th layer upsamples FD to obtain

WD feature channels at full spatial resolution by

FD+1
c (x, y) = FDc∗ (bx/2c , by/2c),

where c∗ = 4c − 3 + (x mod 2) + 2(y mod 2), giving the inverse operation to compression called

pixel shuffle in [56]. In addition, identity-forwarding channels obtained by masking M to extract

separate color channels are concatenated to FD+1 by

FD+1
c (x, y) = M(x, y)mc−WD+1

(x, y); c ∈ {WD+1 + 1, . . .WD+1 + 3}

with m1,m2,m3 binary matrices with 1s at the Bayer grid patterns for the red, green, and blue

measurements of M and 0s elsewhere, respectively. A final convolutional layer interpolates the

learned residual channels with the channel-wise identity mapping from M ,

FD+2
c = ρ

bD+2
c +

WD+2∑
c′=1

wD+2
c,c′ ∗ F

D−1
c′

 , c ∈ {1, . . . ,WD+2}

and the output F is given by a learned affine combination of the last WD+2 feature channels:

Fc = bFc +

WD+2∑
c′=1

wD+2
c,c′ ∗ F

D−1
c′ , c ∈ {1, . . . ,WD+2}
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The hyperparameters are set as D = 15,K = 3, and

Wi =



5 i = 0

12 i = D

64 otherwise.

The convolutional kernels {wdc,c′}d,c,c′ , affine weights {ac,c′}, and biases {bdc}c,d are learned by using

Adam to optimize a normalized L2 loss between ground truth 128 × 128 pixel sRGB patches Xi

and the demosaiced output F (Mi) of the network on Bayerized patches Mi. Patches are artificially

mosaiced in sRGB space and recovered in sRGB space by the network. A custom training dataset was

created wherein images that earlier iterations of the demosaicing network struggled to interpolated

correctly were gathered to create a dataset of difficult patches. The patches were extracted from

images belonging to the ImageNet and MirFlickr datasets. At the time of its publication in 2016,

[19] achieved state of the art performance for single-image demosaicing and denoising in sRGB

space, and was competitive at the joint problem in linear space without any fine-tuning of network

parameters despite having been trained on sRGB images only.

Gharbi’s network demonstrated the power of applying deep convolutional networks to the low-

level image processing problem of demosaicing. Significantly, the network architecture of [19] is not

designed with any explicit model for the recovery of mosaiced data, but rather relies on experimental

observations and tinkering to fine-tune the hyperparameters of an essentially straightforwardly

convolutional model. This may be described as a deep learning heuristic approach, since the

domain-specific knowledge applied to the problem is fundamentally knowledge about the design of

convolutional neural network rather than knowledge about the demosaicing problem.

55



There are several examples of other such deep learning heuristic approaches in the literature.

Syu et al. [59] proposose DMCNN-VD, a 20 layer deep convolutional network which uses as input a

3-channel, uncompressed, mosaiced image obtained by multiplying the input channels of an sRGB

image by the mask matrices m1,m2,m3 described above. Unlike [19], [59] convolves entirely in

the full resolution reconstruction space. The output of the last convolutional layer is added to

a bilinear interpolation of the mosaiced input fast-forwarded past the interior convolutions. The

SELU nonlinearity [31] is used between convolutional layers,

selu(x) =


λx x > 0

α(ex − 1) x ≤ 0

with λ ≈ 1.05, α ≈ 1.67 as in [31]. All convolutional layers in DMCNN-VD consist of 64 3 × 3

kernels except the last, which computes the additive residual with 3 filter banks of 3×3 kernels. The

authors also propose the Flickr500 dataset consisting of high-quality, high-frequency sRGB images

without the visual artifacts of some earlier datasets. Mosaicing and interpolation are performed

exclusively in sRGB space, and experiments indicate generalization to linRGB demosaicing using

the MSR dataset [29].

Tan et al. [60] use the higher sampling frequency of the green channel to design their convolutional

network architecture. The network uses a two-stage process: first, an intermediate green channel is

residually interpolated from the input using a convolutional network; then all channels are residually

interpolated from the input using a second convolutional network that takes the intermediate

channels as input. Instead of using mosaiced images as input, the network operates directly on

the full-resolution bilinear interpolation of the mosaic. To promote the accurate reconstruction of

the intermediate green channel, the network is trained using the sum of an L2 loss comparing the
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intermediate green channel to the ground truth as well as an L2 loss comparing the final output

to the ground truth patch. This architecture can be seen as a deep convolutional version of the

hue-based methods of [1, 10], although the hue is formulated here as an additive difference in the

reconstruction space instead of a ratio or logarithmic difference.

Qian et al. [51] present a joint solution for demosaicing, denoising, and super-resolution using a

convolutional network. This network is distinctive for being built out of so-called residual-in-residual

dense blocks (RRDBs), first introduced in [64] for single-image super-resolution. We will defer the

discussion of RRDBs to Chapter 6.

These deep learning heuristic framework for demosaicing, albeit effective as in [19], ultimately

does not exploit the specific structure of the demosaicing problem. Indeed, the fundamental

connection to the demosaicing problem in [19] inheres in the training dataset instead of the design

of the convolutional network. The proposed architecture does not depend on an analytical model

of the demosaicing problem.

Section 5.5

Demosaicing as an inverse problem

We may interpret demosaicing a noisy image as an inverse problem. Given the mosaiced image

y ∈ Ybayer, we wish to recover the true image x ∈ Ximg where

y = Mx+ n, (5.1)

M : Ximg → Ybayer is the measurement operator corresponding to a Bayer degradation of the “true”

image x and n ∈ Ybayer is noise. It is worth noting that M is hopelessly singular – there is no
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way to distinguish images x1, x2 that agree on the Bayer grid but do not agree off of it once they

have been corrupted by M . This strongly suggests that a prior on the reconstruction space will be

necessary for recovery. The additional corruption by noise n further complicates recovery. Finally,

it is worth noting that for camera pipeline that requires demosaicing, x represents the hypothetical

quantity of the color measurement that would have been obtained were the number of photons in

each of the red, green, and blue sensitivity bandwidths accurately counted at every pixel of the

CCD grid, instead of only those pixels corresponding to the Bayer CFA pattern overlayed thereon.

Such light did did actually enter the camera, but was not observed on account of the CFA grid. As

such, realistic “ground truth” images x ∈Mimg are difficult to obtain and often artificial data such

as that created by applying a 0-1 mask to an already-demosaiced image are used for training.

Kokkinos and Lefkimmiatis [32] design a network for joint denoising and demosaicing inspired by

classical regularization techniques for solving inverse problems. Their core approach is to analytically

reduce demosaicing to a denoising problem which can be iteratively solved by a trained CNN. We

will now examine this approach in detail.

The representation of images as unravelled one-dimensional vectors is valid and more convenient

for the present approach. For [32], the ground truth space Ximg is RN . The measurement operator

M is then a binary diagonal N ×N matrix corresponding to the Bayer CFA pattern. We then have

Ybayer = Im(M) ⊂ RN , and thus n = Mn0 where n0 is N -dimensional noise. We have also that M

is symmetric and orthogonal, and that M is the identity in Bayer space: M |Ybayer = I|Ybayer .

[32] assumes that the observed image is corrupted by additive, zero-mean, Gaussian noise

n ∼ N (0, σ2) in Ybayer. Using the Bayesian maximum a posteriori (MAP) approach, [32] seeks x∗

such that

x∗ = arg max
x

log(p(x|y))
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= arg max
x

[log(p(y|x)) + log(p(x))]

= arg max
x

[
− 1

2σ2
‖y −Mx‖22 + log(p(x))

]
= arg min

x

[
1

2σ2
‖y −Mx‖22 + φ(x)

]
︸ ︷︷ ︸

:=Q(x)

(5.2)

where log(p(y|x)) = − 1
2σ2 ‖y−Mx‖22 follows from the assumption on the distribution of the noise n,

and φ(x) is a regularization term representing the negative log prior of observing x. It is important

to observe that the regularization term is not given explicitly. Instead, an optimal regularization

will be learned from data.

From (5.2), a majorization-minimization approach (see Section 2.5) is employed such that the

choice of majorizer permits a decoupling of the degradation operator M from x. The data-fidelity

term 1
2σ2 ‖y −Mx‖22 is selectively majorized by

f(x, x0) =
1

2σ2

[
‖y −Mx‖22 + (x− x0)T [I −MTM ](x− x0)

]

since MTM = M is a binary diagonal matrix, hence I −MTM is positive semidefinite, whence

f(x, x0) ≥ 1
2σ2 ‖y −Mx‖22 for all x, x0 with equality at x = x0. Following [32], we observe that

‖y −Mx‖22 + (x− x0)T [I −MTM ](x− x0)

= (y −Mx)T (y −Mx) + (x− x0)T (x− x0)− (x− x0)TMTM(x− x0)

= yT y − 2yTMx+ (Mx)TMx+ xTx− 2xT0 x+ xT0 x0 − xTMTMx+ 2xTMx0 − xT0 Mx0

= yT y − 2yTMx+ xTMx+ xTx− 2xT0 x+ xT0 x0 − xTMx+ 2xTMx0 − xT0 Mx0

= yT y − 2yTMx+ xTx− 2xT0 x+ xT0 x0 + 2xTMx0 − xT0 Mx0, (5.3)
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showing that using f to majorize the data-fidelity term effectively decouples M from x. By

introducing z = y + (I −M)x0 we may collect terms from (5.3) and rewrite

f(x, x0) =
1

2σ2
‖x− z‖22 + C(y, x0)

giving the majorizer F of Q,

F (x, x(t)) =
1

2σ2
‖x− z‖22 + φ(x) + C(y, x(t)). (5.4)

with associated iterative algorithm

x(t+1) = arg min
x

F (x, x(t)) = arg min
x

1

2σ2
‖x− z‖22 + φ(x) (5.5)

Note that z = y + (I − M)x(t) combines the observed, mosaiced information from y with the

reconstructed, unobserved measurements from x(t). In the case of perfect reconstruction x(t) = x,

we have z = Mx+ n+ (I −M)x = x+ n, the ground truth image corrupted with noise supported

on the CFA grid. Indeed, as noted in [32], (5.5) is the objective function of a denoising problem

with noisy measurement z and ground truth x.

Thus each iteration step for the proposed majorization-minimization demosaicing algorithm

reduces to the application of a denoising network to the term z(t) = y+ (I−M)x(t). The authors of

[32] propose ResDNet, a residual convolutional denoising network first proposed in [40]. ResDNet

takes the additional parameters σ, an estimate of the variance of the original noise corrupting the

data, and γi a trainable parameter used to modify the computed residual noise to have the correct

variance for the current iteration.
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Algorithm 2: Forward Pass of MMNet for Iterative Joint Demosaicing and Denoising,
[32]

Data: M : Bayer operator, y: input, K: number of iterations, w ∈ RK : extrapolation
weights, σ: variance of original noise, γ ∈ RK : projection parameters

x(0) = 0

x(1) = y − (I −M)x(0)

for i ← 1 to K do

u = x(i) + wi(x
(i) − x(i−1))

x(i+1) = ResDNet((I −M)u+ y, σ, γi)
end

Algorithm 2 defines MMNet, a recurrent neural network that iteratively applies the ResDNet

architecture to increasingly fine-tuned demosaicing estimates. There are not K different copies

of ResDNet, but instead a single set of parameters that are shared across all iterations. This

significantly increases the memory demands of computing the gradient of the loss with respect to

the parameters in proportion to K. This situation can be remedied by use of Truncated Back-

propagation Through Time (TBPTT) [53], which segments the K iterations into smaller stages

of k iterations. Parameters are then updated at the end of each kth iteration during training,

which frees up the memory used in backpropagation to allow for more total iterations K. ResDNet

is pre-trained using an L2 loss on a denoising dataset, and then fine-tuned with TBPTT for an

average L1 loss on a noisy mosaiced dataset. Using K = 2, MMNet outperforms [19] on the MSR

demosaicing test set for noisy images in both linRGB and sRGB color spaces, with even better

performance with K = 10 and K = 20 [32].

61



Section 5.6

Super-resolution

Related to demosaicing is the task of digital image super-resolution (SR). The single-image super-

resolution task, given a low-resolution image XLR, is to produce a realistic higher-resolution image

XHR at some fixed higher multiple of the original resolution, such as two, four, or eight3. As

with demosaicing, spline interpolation methods like bilinear or bicubic interpolation are capable of

providing a rough start, but produce undesirable artifacts in the high-resolution images in proportion

to the resolution factor.

Super-resolution is a similar task to demosaicing in that both problems require the accurate

upsampling of light measurements in a digital image. If we consider the compressed version of a

Bayer image as in Section 5.4, the comparison becomes even plainer: the 4 color channels of a

compressed mosaiced image must be used to produce the 3 color channels of a demosaiced image

with twice the spatial resolution. The corresponding 2xSR problem must produce the 3 color

channels of the super-resolved image from 3 original low-resolution color channels. In this way, the

2xSR problem uses fewer input measurements than the demosaicing problem. It is not the case,

however, that demosaicing is trivially reducible to 2xSR because the geometry of the compressed

Bayer input is fundamentally different than that of a low-resolution input to SR. The color channels

in a compressed Bayer image are not aligned with each other in a strict sense – they record values

of light corresponding to physically different spots on the digital camera CCD array. The similarity

of the two problems remains high enough, though, that techniques from the SR literature can be

brought to bear on the demosaicing problem.

3This multiple applies in both height and width dimensions; thus a 2x super-resolved image will contain 4 times
as many pixels as the original
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Some early work on super-resolution treats the multiple image super-resolution (MISR) problem

instead of the single-image super-resolution (SISR) described above. In this problem, a set of

low-resolution images X1, . . . , XN are observed and a single super-resolved image XN,HR is desired.

Irani and Peleg [27] give an iterative algorithm for MISR inspired by back-projection in computer

tomography. It is assumed that the observed images differ from each other by translations and

rotations, and thus the motion warps can be easily parametrized and estimated. After an initial

approximation X
(0)
N of the high-resolution image is made, each step k of the algorithm simulates the

forward operation by using an image formation model along with the estimated warps to obtain a

set of approximated low-resolution images X
(k)
1 , . . . , X

(k)
N . These approximate images are compared

to the true low-resolution input set, and the differences are back-projected to the super-resolution

domain. The next iteration X
(k+1)
N is obtained by correcting X

(k)
N with these back-projected residuals.

In total, this scheme performs one initial upsampling back-projection followed by K iterations of a

downsampling forward operation followed by an upsampling back-projection.

This iterative back-projection scheme for MISR has been replicated in deep neural network

architectures for SR. Haris et al. [22] propose the Deep Back-Projection Network (DBPN), a CNN

in the style of [27]. The 2K forward operator and back-projections of the K iterations of [27] are

replaced by 2K convolutional modules with learned weights. Each back-projection module computes

residual high-resolution features from a low-resolution residual input; these features give increasingly

fine details as iteration depth increases. The downsampling modules reduce the high-resolution

residual of the previous step to a low-resolution quantity used as input to the next back-projection

module. The network outputs a learned affine combination of the K high-resolution residual maps.

A dense variant is also proposed where all previous high- or low-resolution residuals are combined

as an input to the following module. We study the application of this scheme to spatial demosaicing

in Chapter 6.
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Haris et al. [23] also propose the Recurrent Back-Projection Network (RBPN) for video super-

resolution (VSR). Video SR is a specific case of MISR where the observed frames are assumed

to belong to the same video sequence with consistent motion between the frames. Hence the

ordering of the frames is usable information, unlike in MISR when only the set of observations

itself matters. For a sequence {X0, . . . , XN} of low-resolution video frames, RBPN will compute N

high-resolution residual feature maps that are combined in a final convolution to produce the super-

resolved output. The low resolution features L0 are initialized by convolving the low-resolution

input with a convolutional filter bank φ0. Each residual map is computed by the following:

Mk = FeatureExtraction(Xk−1, XN )

Hk = Encoder(Lk−1,Mk)

Lk = Decoder(Hk)

where FeatureExtraction is a convolutional layer to extract features from the low-resolution frames

and Encoder is defined by

H l
k−1 = SISR(Lk−1)

Ek = ResidualFeatures(H l
k−1 −MISR(Mk))

Encoder(Lk−1,Mk) = SISR(Lk−1) + ResidualFeatures(Ek).

Here, SISR is an implementation of DBPN, while MISR, ResidualFeatures, and Decoder are based

off of the ResNet architecture [25]. Since RBPN is a recurrent neural network, the parameters of

the encoder and decoder modules are shared between all N passes. We will adapt this architecture

to the video demosaicing problem in Chapter 6.
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Section 5.7

Temporal demosaicing

The temporal or multi-frame demosaicing problem generalizes the above single-frame demosaicing

problem. The single-frame demosaicing problem concerns the recovery of information from one

Bayerized image. In other contexts, though, more information can be brought to bear on the

problem. Consider the demosaicing problem for a sequence of images {xt}, as in video or burst

photography applications. We observe the sequence of mosaiced frames {yt}, and wish to produce

a close approximation {x̂t} of the original sequence. For a fixed t0, the neighboring observed frames

yt0−1 and yt0+1 contain color information which may, in principle, be used to improve the quality

of our estimate x̂t.

The literature on temporal demosaicing is considerably sparser than the single-frame problem.

Farsiu et al. [15] offers an inverse problem approach to multiframe demosaicing with explicit

regularization terms. Kokkinos and Lefkimmiatis [33] generalizes their majorization-minimization

approach to single-frame demosaicing to burst photography sequences of mosaiced data, where frame

registration is accomplished with orthogonal transformations. Ehret et al. [14] use a network inspired

heavily by [19] and assume that image registration can be accomplished by affine transformations

of coordinates. Interestingly, [14] demonstrates how a demosaicing network can be trained in

an unsupervised fashion using an aligned burst of images. However, no existing approach in the

literature has considered demosaicing frame sequences that differ by non-affine warps. We examine

such a network for demosaicing arbitrarily warped frame sequences in Chapter 6. This methodology

depends on the estimation of optical flow (see Section 3.5), which has recently received attention

from CNN researchers. We also will consider adapting the RBPN of [23] for the video demosaicing
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problem. As shown in [23], this scheme also benefits from the explicit estimation of a dense optical

flow.

Subsection 5.7.1

ProxNet

To model the forward problem for the capture of a sequence of B frames with the goal of demosaicing

the Bth frame, [33] uses the model

Yi = MSi(X) + n; i = 1, . . . , B (5.6)

with the new operator Si corresponding to the spatial transformation that registers frame K to

frame i. Kokkinos and Lefkimmiatis [33] assume that this spatial transformation can be represented

by a composition of translation and rotation. Supposing that we have calculated all the warping

transformations Si, the objective function for maximum a posteriori reconstruction can then be

generalized from the single frame problem to compare the reconstruction X̂ to all B mosaiced

observed frames.

X∗ = arg min
X

[
1

2Bσ2

B∑
i=1

‖MSi(X)− Yi‖22 + φ(X)

]
(5.7)

We are interested in a proximal method for minimizing this objective function, so we wish to obtain

derivatives of the data-fidelity summation in (5.7). As noted in [33], the derivative of the warping

transformation can be linearized in the discrete implementation space of digital images. We recall

from Section 3.5 that optical flow ν can be applied to images sampled on the discrete grid by

defining the warping transformation W−1 = (I + ν). The operation Si in the forward model (5.6)

corresponds to resampling the ground truth pixels X using the warp W−1
i obtained from the optical
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flow from X = XK to the earlier scene Xi. This optical flow can be approximated by using a

flow prediction algorithm on a cheap interpolation of the mosaiced inputs YK , Yi. Having obtained

such a flow, the operator Si(X) reduces to that matrix multiplication on X giving the resampling

coefficients of the interpolated warp, Si(X) = ρiX. Thus ∇(Si(X)) = ρTi , and hence

∇X

(
1

2Bσ2

B∑
i=1

‖MSi(X)− Yi‖22

)
=

1

Bσ2

B∑
i=1

ρTi M
T (MρiX − Yi)

We observe that this equation is a half-truth. The computed warps Si themselves should depend upon

our estimate of X, but by linearizing the warping operation we conveniently ignore this dependence.

In reality, recomputation of the B warps for every iteration on X(t) is a costly operation that may be

impractical. However, future work may investigate joint iterative flow refinement and demosaicing

in the vein of [68].

With the gradient of the data-fidelity term in hand, the proximal gradient method for the

multi-frame demosaicing problem is

x(t+1) = prox
σ2φ

(
x(t) +

1

B

B∑
i=1

ρTi M
T (Yi −MρiX

(t))

)
.

Supposing that we have a network ProxNet trained for the proximal minimization task, the architec-

ture of [33] for burst demosaicing is given by Algorithm 3. The design of ProxNet itself, a residual

architecture for data denoising, is discussed in [32].

67



Algorithm 3: BurstDemosaicNet [33]

Data: {Yi}Bi=1 Bayer input frames, K: number of iterations, i: bilinear interpolation kernel,
ProxNet: network to compute proximal operator, w ∈ RK : extrapolation weights

X0 ← 0
X1 ← YB
for i ← 1 to B − 1 do

νi ← ComputeAffineWarp(i ∗ YB,i ∗ Yi)
ρi ← ComputeResamplingMatrix(I + νi)

end
for t ← 1 to K do

u← x(t) + wt(x
(t) − x(t−1))

z ← 1
B

∑B
i=1 ρ

T
i M

T (Mρiu)

x(t+1) = ProxNet(x(t) − z)
end

return x(K+1)

Section 5.8

Deep optical flow estimation

As discussed in Chapter 3, optical flow is a methodology for describing motion in digital video. In

particular, an optical flow estimate can be used to align a video sequence by resampling frames

according to the computed flow. Although optical flow is subject to many limitations at the

theoretical level (lighting changes, scene occlusions, and large displacements are difficult to handle),

for simplified scenes it is possible to obtain good estimates of optical flow.

Horn and Schunck [26] introduced a variational approach for computing optical flow using a

system of PDEs the solution of which would give the scene optical flow. There is a large literature

of subsequent optical flow approaches which we will not review here, instead skipping to recent

developments in learning optical flow using deep neural networks.

The seminal deep learning optical flow network was Flownet [16], a deep convolutional neural

network for estimating optical flow. A proliferation of work soon followed, including PWC-Net [57].
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PWC-Net has proven to be a popular architectural approach to the problem of learning optical

flow. The basic approach of PWC-Net is to estimate flow using a multi-scale pyramid of learned

features from a pair of input frames. This approach has precedent in the classical literature. A pair

of input frames are downsampled and convolved with learned filters to create a multi-scale pyramid

of the image features, each at half the resolution of the last. Starting from the lowest-resolution

level, an optical flow is successively computed, upsampled, and used as input to the next lowest

resolution level. Using two input frames F l1, F
l
2, computation of flow at resolution level l first warps

F2,l towards F1,l using the (bilinearly upsampled) flow from the previous level.

F lw(x) = F l2(x+ up2(νl+1)(x))

Using the warped features, a cost volume is computed. A cost volume is used to represent the “cost”

of associating feature-pixels in the warped second image with those in the first.

cvl(x1, x2) =
1

Nl
(F l1(x1))TF lw(x2)

where Nl is the number of features in level l of the feature pyramid. It is computationally expensive

to compute cvl for every pair of feature pixels x1, x2, requiring 2−2lH2W 2Nl multiplications for

each level of the feature pyramid. Therefore, PWC-Net computes a local cost volume such that

‖x1−x2‖∞ ≤ d. The effective reach of local cost volume cvl with reach d is 2ld pixels on the original

frames, owing the upsampling of flow between levels of the pyramid. The resulting cost volume of

the lth feature level has size 2−2lHW (2d+ 1)2 for each pair of input frames in the training batch,

eliminating the quadratic dependence on image size required by a full cost volume.

The lth level optical flow is learned by a sequence of convolutional layers with indpedendent

weights from prior and subsequent feature levels. The inputs to the network are the features of

69



the first image, the computed local cost volume, and the upsampled flow from the previous level.

From these the network outputs the estimated optical flow for the lth level. Finally, PWC-Net

refines this flow using a context network inspired by earlier methods of estimating flow. The context

network uses dilated convolutional layers to transform its inputs, the estimated flow along with

a hidden layer of the flow estimation layer output, into its ouput, the refined optical flow for the

lth level of features. The use of dilated convolutions in the context network enlarges the range

of information available in computing each optical flow vector at a reduced computational cost

compared to ordinary convolutions of the similar range.

The objective function of PWC-Net combines a multiscale L2 loss on the accuracy of flow

reconstruction on the different levels of the network with L2 regularization on the network weights.

This multiscale loss encourages the internal warping layers to perform the intended purpose of

estimating an image alignment warp instead of learning some other, less intuitive mapping between

input and optical flow output. The objective function is

L(θ) =

 L∑
l=l0

αl
∑
x

‖νlθ(x)− ↓2l νlGT (x)‖2

+ γ‖θ‖2

where νlθ denotes the learned flow at level l, νlGT is the ground truth flow used for supervised

learning, ↓2l denotes the 2l-times downsampling operator, and l0 is the desired resolution level of

the estimated flow. In [57], l0 = 2 is used in experiments. This condition allows the network to

be more lean than it would otherwise be if a full-resolution flow were to be learned. The resulting

downsampled flow can then be scaled to full-resolution with a simple bilinear upsampling or some

more sophisticated method.
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Chapter 6

Numerical experiments with CNNs for spatial and temporal demosaicing

This chapter details the results of numerical experiments with different demosaicing CNN archi-

tectures. We define several architectures for spatial and temporal demosaicing along with training

details and accuracy as evaluated on several demosaicing test datasets. We used popular deep

learning frameworks TensorFlow and PyTorch for these experiments. Code for the experiments is

available at https://github.com/montefischer/deep-demosaic.

We present the results of our numerical experiments with convolutional networks for the image

and video demosaicing problems. We define several architectures for spatial and temporal demosaic-

ing along with training details and accuracy as evaluated on several demosaicing test datasets. We

evaluate identity-bypass networks, dense residual connection networks, and deep back-projection

networks for the image demosaicing problem. For the video problem, we propose and evaluate

MFD-Net, a network that registers several frames using an optical flow and exploits the temporal

information therein. We also adapt a recurrent back-projection network architecture originally

proposed in the super-resolution literature for the video demosaicing problem. We include both

quantitative and qualitative comparison of demosaicing networks. We find that dense residual

connections are advantageous to single image demosaicing networks, that MFD-Net suffers from

a learning problem but demonstrates promising performance over single image methods, and that

deep recurrent back-projection networks effectively and efficiently exploit temporal context for

demosaicing video sequences.
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Section 6.1

Datasets for demosaicing

We review the existing datasets used to train and evaluate demosaicing models. As discussed in 4.3,

any CNN model for a supervised learning problem requires a training set of pairs of ground truth

and inputs. In the case of demosaicing, it is difficult to obtain accurate ground truth information

corresponding to a mosaiced input. This is precisely because two thirds of the ground truth

measurements are not simply not recorded by a digital camera using the Bayer CFA (see Section

5.3). To circumvent this issue several proposed datasets for demosaicing remove pixels from already-

demosaiced sRGB images according to the Bayer CFA pattern. Gharbi et al. [19] introduced a

large dataset of images selected for the difficulty they posed to demosaicing methods. The original

images were all in sRGB space and some were corrupted by JPEG artifacts. To correct for this,

the images included in the dataset are downsampled by a factor of 4 using a bicubic kernel. The

large size of this dataset greatly increases the training time for CNN demosaicing architectures,

and other proposed datasets are much smaller. The Flickr500 dataset of Syu et al. [59] consists

of 500 high-frequency sRGB images. The popular demosaicing test sets, Kodak PhotoCD [18] and

McMaster [71] also use the artificially-mosaiced sRGB image scheme. We will use these two datasets

for evaluating our own experiments in spatial demosaicing.

Khashabi et al. [29] propose a more realistic training dataset that better models the actual

conditions under which demosaicing is performed. As discussed in Sections 5.2 and 5.3, the demo-

saicing operation is performed on raw images of linRGB measurements instead of gamma-adjusted,

color-corrected images in sRGB space. As such, the approaches in the academic literature that

propose to train and evaluate demosaicing algorithms using artificially mosaiced sRGB images are

solving an artificial problem. To remedy this, the authors propose a novel downsampling technique
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that is performed on images converted to linRGB space [29]. The resulting dataset is the Microsoft

Research Demosaicing Dataset, or MSR for short. The MSR dataset consists of both a training

set and a test set of images. However, it is not an obvious choice to use the MSR training dataset

for deep demosaicing architectures. Gharbi et al. [19] find that a network trained only on sRGB

examples actually outperforms existing methods on the MSR test set without further training, and

that training instead on the MSR training set does not improve demosaicing quality. Syu et al.

[59] give a similar result, exhibiting a network trained on artificially-mosaiced sRGB examples that

nonetheless is capable of outperforming linRGB-trained methods on the MSR linRGB testing set. In

light of these results, we use the Flickr500 sRGB dataset for training the single-image demosaicing

models in Section 6.2 because of its rich variety of high-frequency, difficult-to-demosaic patches.

We note that Qian et al. [51] recently proposed the demosaicing datasets PixelShift200 and

PixelShiftTest which use a Sony camera equipped with pixel shift hardware to create “perfect”

demosaicing ground truth. The pixel shift camera physically shifts its sensor grid by single-pixel

offsets to take four mosaiced images of a static scene. By combining these images, the camera

eliminates the need for demosaicing altogether. Any motion present in such a scene would create

artifacts in the merged image, so the dataset includes only high-resolution static scenes. We do not

propose to evaluate this dataset in the present work, but present it as an interesting new advance

in demosaicing dataset creation.

To the best of our knowledge, there are no currently published datasets specifically intended

for demosaicing video sequences of frames. Previous works addressing multi-frame demosaicing [33,

14] assume that the multiple frames differ from each other by at most rotations and translations.

Although this may be a good approximation for bursts of images obtained on modern digital

cameras, it is a very bad assumption for arbitrary video sequences that may include complex motion.

Short of creating a novel training and test dataset, we are left with the option of using artificially
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mosaiced frame sequences from datasets for video processing (denoising, super-resolution, etc.). In

particular, the recent Vimeo-90k dataset proposed in [68] contains many seven-frame video sequences

obtained from the Internet video sharing website Vimeo. This is far from an ideal dataset for video

demosaicing as many sequences have been processed by video editing software and some contain

added graphics or other video effects. Worse, visual inspection of the dataset reveals the presence

of significant JPEG block artifacts which make any network trained on the dataset impractical to

use on real-world data. Additionally, many of the sequences prove to be easier to demosaic than

is desirable for training a network to perform well on edge cases. Nonetheless, the dataset has

been used to some success in video super-resolution and other tasks [68, 23], and we will use it to

evaluate our own proposed architectures. The full dataset is very large and would greatly increase

the length of each epoch; as a compromise between training time and training set variety we select

a 500-sequence subset of the full dataset for training, a 100-sequence subset of different sequences

for validation, and a final different 200-sequence subset for testing. Details of which sequences we

selected are available at https://github.com/montefischer/deep-demosaic.

To measure demosaicing quality, we use the peak-signal to noise ratio (PSNR) as is well-

represented in the demosaicing literature. The PSNR (in decibels) of a one-channel N ×M demo-

saiced image y compared to the ground truth image x is computed by

MSE(y, x) =
1

NM
‖y − x‖22

PSNR(y, x) = 10 log10

(
1

MSE(y, x)

)

assuming that pixel intensities are represented in the range [0, 1] [8]. For images with three color

channels, we compute the PSNR by averaging the separate color channel PSNRs. All our reported

quantitative performance results are measured in dB PSNR, averaged across color channels.

74



Section 6.2

Single-frame demosaicing models

A wide range of single-frame (spatial) demosaicing models have been proposed can be described

as deep learning heuristic demosaicing, as discussed in Section 5.4. We propose to independently

implement and evaluate a number of these architecture types using a standard dedication of training

time, training data, and optimization algorithms. We evaluate the residual-in-residual dense block

CNN module, as originally proposed for use in single-image super-resolution, for use in demosaicing

networks.

As [32] demonstrates, recurrent architectures for single-image demosaicing inspired by proximal

methods in the inverse problem literature can significantly improve on heuristic-based methods in

both accuracy and computational complexity. Following this, we evaluate the performance of the

network [32] for single-frame demosaicing when trained under a similar computational budget as

the other proposed heuristic methods.

Subsection 6.2.1

Identity bypass convolutional demosaicing

Following [19], we implement and train a CNN for learning the residual between input and an identity

skip connection from the mosaiced input image, performing our convolutions in the (compressed)

measurement space with a final decompression to obtain the residual. We intend this network to

serve as a basis for comparison with the other experiments herein, since the exact results of [19]

employs a different training dataset, optimization method, and length of training time. The network

is defined in Algorithm 4. Note that we use the ◦ operator to represent channel-wise concatenation,

75



the � operator to represent the Bayer compression operation, and the � operator to represent the

Bayer decompression operation (see Section 5.4). Here and henceforth we omit the added bias terms

in algorithms for simplicity.

Algorithm 4: Identity Bypass Demosaicing CNN

Data: X: Bayer input, {Φk}Dk=1: convolutional filter banks, ρ: nonlinearity
X0 ←� (X)
for i ← 1 to D − 2 do

Xi ← ρ(Φi ∗Xi−1);
end
R =� XD−2

XD−1 ← ρ(ΦD−1 ∗ (R ◦X))
return ΦD∗XD−1

Instead of a identity mapping from the channels of the input image to the final reconstruction,

we also examine the use of a bilinear interpolation against which residual channel information is

learned. This technique has been employed in previous demosaicing CNN architectures [59]. Our

bilinear residual network is defined in Algorithm 5. We use the convolutional operator i to denote

bilinear interpolation of an uncompressed Bayer mosaic.

Algorithm 5: Bilinear Bypass Demosaicing CNN

Data: X: Bayer input, {Φk}Dk=1: convolutional filter banks, ρ: nonlinearity
X0 ←� (X)
for i ← 1 to D − 2 do

Xi ← ρ(Φi ∗Xi−1)
end
R =� XD−2

Xbilin ← i ∗X
XD−1 ← ρ(ΦD−1 ∗ (R ◦Xbilin))
return ΦD∗XD−1

We compare the results of training these networks on the Flickr500 training dataset using data

augmentation regularization by extracting, at each epoch, a random square 64 × 64 pixel patche

from each image and applying a random symmetry of D8 to each patch. We initialize all network
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Table 6.1: CNN Demosaicing with a single residual connection. Networks trained with a learning
rate scheduler that automatically decreased learning rate upon a stall in loss function improvement
for 20 epochs are labeled with “sch.” in training field.

Network Epochs Training Kodak McMaster

IdentityBypass 1000 L2, AMSgrad@1e-3; sch. 38.139 36.096
IdentityBypass 2000 L2, Adam@1e-4 35.332 33.756
BilinearBypass 1000 L2, AMSgrad@1e-3; sch. 37.497 36.125
BilinearBypass 2000 L2, Adam@1e-4 39.845 37.780
BilinearBypass 3000 L2, Adam@1e-41 40.320 38.054

parameters as in [24]. The networks we define contain 493,071 trainable parameters each. We

optimize with Adam [30] or AMSGrad [52]. For some training procedures, we use a learning rate

scheduler that decreases the learning rate by a factor of 2 when there have been no improvements

in the loss in 20 epochs. These results are presented in Table 6.1.

Subsection 6.2.2

Residual-in-residual dense blocks for demosaicing

Wang et al. [64] introduced the residual-in-residual dense block (RRDB) for applications in super-

resolution. The parallels between demosaicing and super-resolution (most obviously that, for the

green channel, demosaicing is exactly a 2x super-resolution task) inspired [51] to apply RRDB for the

joint problem. However, in [51] a total of six RRDBs were used in succession leading. The authors

do not elaborate on the total number of parameters used, but our own calculations suggest that

this produces a network with approximately 6.5 million parameters, when earlier state-of-the-art

networks do not exceed 600,000 parameters [19] and have used as few as 380,567 [32]. Here, we

apply RRDB directly to the spatial demosaicing problem in a network we call RRDBNet, taking

care to adjust the network architecture to be comparable with the size of earlier proposed networks.
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A RRDB module consists of N residual dense blocks of depth K, defined in Algorithm 6, in

consecutive order as specified in Algorithm 7. The dimensionality of the convolutional filter banks

must agree with the structure implicit in the definition of the network architectures. Thus if the

input X has s0 channels, and convolution Φ1 ∗X creates an s1-channel output, then Φ2 must define

s0 + s1 filters for each of its s2 output channels. Wang et al. [64] set the exterior channel count

s0, sK = 64 and the internal channel count si = 32 otherwise.

Algorithm 6: Residual Dense Block (RDB)

Data: X: input signal, K: depth of RDB, {Φk}Kk=1: convolutional filter banks, ρ:
nonlinearity, α: residual weight

X1 ← ρ(Φ1 ∗X)
for i ← 2 to K do

Zi ← X ◦X1 ◦ · · · ◦Xi−1

Xi ← ρ(Φi ∗ Zi + βi)

end
return α ·XK +X

Algorithm 7: Residual-in-Residual Dense Block (RRDB)

Data: X: input signal, {RDBj}Nj=1: N RDB subcomponents, α: residual weight

X0 ← X
for j ← 1 to N do

Xi = RDBj(Xi−1);
end
return α ·XN +X

We define RRDBNet in Algorithm 8 as the sequential application of M RRDBs to learn a

residual input. As always, filter banks φ1, φ2 must match the input / output filter dimensionality

requirements of the compressed 4-channel input X and the 12-channel input to the decompression

operator �.

We give the results of training RRDBNet variants under different optimization schemes in Table

6.2. For some networks we train using AMSGrad [54] optimization with an initial learning rate of

10−3 that was reduced by a factor of 2 when the training loss had ceased to improve for over 20
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Algorithm 8: RRDBNet – Residual-in-Residual Dense Block Network for Spatial Demo-
saicing

Data: X Bayer input signal, {RRDBh}Mh=1: M RRDB modules, φ1: initial convolutional
filter bank, φ2: final convolutional filter bank, i: bilinear interpolation kernel

X0 ← φ1 ∗ (� X)
for h ← 1 to M do

Xi = RRDBh(Xi−1);
end
return i ∗X+ � (φ2 ∗XM )

epochs of training. Numerical experiments suggest that this choice of learning rate scheduler is poor

for use with the stochastic Flickr500 training dataset, as the scheduler had drastically decreased

the learning rate by the 1000th epoch to 1e-8. Such a low learning rate is unlikely to generate any

meaningful updates to the parameters of these particular networks, but by keeping a higher learning

rate for more epochs superior performance can be obtained.

In the interest of comparison with the above bypass networks with almost four times fewer

parameters as the RRDBNet defined in [64] (M = 3, N = 3,K = 5), we also report the result

of training lower-capacity versions of RRDBNet. We label the RRDBNet defined by M,N,K, e

exterior channels, and i internal channels as RRDBNetM,N,K,e,i. We use α = 0.2 for all networks.

Our results indicate that the RRDB architecture significantly outperforms bypass-style architec-

tures at comparable network size and training time. Unsurprisingly, the full RRDBNet with over 2

million parameters demonstrates a higher capacity, but at a significant memory cost. Even when

scaling RRDBNet down (M = 1, N = 3,K = 5, e = 32, i = 32) to have fewer parameters than the

earlier bypass networks, improved performance can be empirically observed within the first 1000

epochs of training. Interestingly, although PSNR is computed from a squared-error loss, we find

here that training using the L1 loss substantially improves quantitative output quality compared

to training with an L2 loss under similar conditions. Comparing networks trained with an initial
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Table 6.2: RRDBNet demosaicing with M = 3, N = 3,K = 5, 64 exterior channels, 32 internal
channels. At the 1000th and the 2000th epochs, the learning rate is reduced by a factor of 10.

Network Parameters Epochs Training Kodak McM

RRDBNet3,3,5,64,32 2 167 564 1000 L1, AMSgrad@1e-3; sch. 41.162 39.205
RRDBNet3,3,5,64,32 2 167 564 1000 L2, AMSgrad@1e-3; sch. 40.953 38.777
RRDBNet3,3,5,64,32 2 167 564 1000 L2, Adam@1e-4; 40.923 38.593
RRDBNet3,3,5,64,32 2 167 564 2000 L2, Adam@1e-4; 41.250 39.029
RRDBNet1,3,5,32,32 419 852 1000 L2, AMSgrad@1e-4 34.016 33.305
RRDBNet1,3,5,32,32 419 852 1000 L1, Adam@1e-3 40.736 38.444
RRDBNet1,3,5,32,32 419 852 2000 L1, Adam@1e-3 41.028 38.818
RRDBNet∗1,3,5,32,32 419 852 20 700 L1, Adam@1e-3 41.569 38.991

RRDBNet1,3,5,32,32 419 852 1000 L2, Adam@1e-3 40.000 38.089
RRDBNet1,3,5,32,32 419 852 2000 L2, Adam@1e-3 40.972 38.864
RRDBNet1,3,4,64,32 535 084 1000 L2, Adam@1e-4 39.514 36.699
RRDBNet1,3,4,64,32 535 084 2000 L2, Adam@1e-4 39.835 37.592

10−3 learning rate and networks training with a 10−4 initial learning rate, we see the harmful effect

of choosing an initial learning rate that is too small. We also train RRDBNet∗ for a large number

of epochs2 with an L1 loss to test the full capacity of the RRDBNet architecture. This network

produces the highest-quality prediction results, even outperforming larger networks trained for fewer

epochs.

Subsection 6.2.3

Deep back-projection demosaicing

Inspired by the super-resolution literature [22] discussed in Section 5.6, we investigate the suitablility

of deep back-projection networks (DBPN) for single-frame demosaicing. The architecture of DBPN

iteratively applies up- and down-projections from low-resolution feature space to high-resolution

feature space. Unlike [32], the back-projections of DBPN do not produce actual 3-channel full-

2We reduce the learning rate for RRDBNet∗ by a factor of 10 after the 1000th epoch and the 2000th epoch.
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Table 6.3: DBPN demosaicing. Every 1000 epochs after the first 1000, the learning rate is decreased
by a factor of 10.

Network Parameters Epochs Training Kodak McM

DBPN2 494 919 2000 L2, Adam@1e-4 39.818 38.167
DBPN2 494 919 3000 L2, Adam@1e-4 40.583 38.613
DBPN2 494 919 4000 L2, Adam@1e-4 40.539 38.655

resolution color images, but instead produce dozens of full-resolution feature maps. Only at the

end of the forward pass does the DBPN architecture predict a demosaiced 3-channel image.

Algorithm 9: DBPNT – Deep Back-Projection Network for Spatial Demosaicing

Data: Y : Bayer input signal, T : number of back-projection steps, {UpModulei}Ti=1:
back-projection modules, {DownModulei}T−1

i=1 : forward operator modules, φ1, φ2:
initial convolutions, {ψj}Sj=1: interpolating convolutions, ρ: nonlinearity

Y0 ← (� Y )
Y1 ← ρ(φ1 ∗ ρ(φ0 ∗ Y1))
Z = UpModule1(Y1)
H ← (i ∗ Y0) ◦ Z
for i ← 2 to T do

Z ← DownModulei−1(Z)
Z ← UpModulei(Z)
H ← H ◦ Z

end
X ← H
for j ← 1 to S do

X ← ρ(ψj ∗X)
end
return X

Subsection 6.2.4

Qualitative comparison of spatial demosaicing networks

For qualitative comparison of several of the proposed demosaicing methods, we include Figure

6.1. Here, we compare a ground truth (GT) 32 × 32 pixel patch extracted from a high-frequency
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Algorithm 10: UpModule – Back-Projection Module for Spatial Demosaicing

Data: L: low-resolution input, φ↑, ψ↑: upsampling convolutions, φ↓: downsampling
convolution

H0 ← φ↑ ∗ L
L0 ← φ↓ ∗H0

E ← L0 − L
H1 ← ψ↑ ∗ E
return H0 +H1

Algorithm 11: DownModule – Forward Operator Module for Spatial Demosaicing

Data: H: high-resolution input, φ↓, ψ↓: downsampling convolutions, φ↑: upsampling
convolution

L0 ← φ↓ ∗H
H0 ← φ↑ ∗ L0

E ← H0 −H
L1 ← ψ↓ ∗ E
return L0 + L1

region of an image in either the Kodak or McMaster datasets to the performance of several of our

proposed demosaicing networks on an artificially mosaiced version of the patch. The false color

and zippering artifacts of bilinear demosaicing are clearly noticeable here. We also observe that

bypass-style networks have difficulty demosaicing the high-frequency vertical stripes of the third

row patch, compared to deep back-projection or residual-in-residual dense block architectures.

The specific networks shown in Figure 6.1 are as follows. “Bilinear” means simple bilinear

demosaicing. “Id. Bypass” refers to the best performing identity bypass network of Table 6.1.

“RRDB” denotes the best performing RRDBNet architecture network in Table 6.2, itself with an L1

loss. “DBPN2” denotes the third network in Table 6.3.
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GT Bilinear Id. Bypass RRDB∗ DBPN2

Figure 6.1: Qualitative evaluation of several proposed demosaicing methods. Ground truth (GT)
patches are on the left.
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Section 6.3

Temporal demosaicing models

As discussed above, algorithms for demosaicing a related sequence of frames have are less well-

represented in the literature. The existing literature makes the assumption that frames can be

registered by means of an affine warp, and does not take temporal order into account when demo-

saicing. We propose and examine MFD-Net, a network that uses an implementation of PWC-Net

to compute optical flow for frame alignment, and combines the aligned frames using a pixel-wise

softmax layer. Unlike previous networks for multi-frame demosaicing, MFD-Net is capable of align-

ing images in situations with complex motion. We also examine the extension of the Recurrent

Back-Projection Network (RBPN) [23], a successful recurrent CNN for video super-resolution, to

the video demosaicing problem.

Subsection 6.3.1

MFD-Net

For a more sophisticated temporal demosaicing algorithm, we propose the Multi-Frame Demosaicing

Network (MFD-Net). As input, MFD-Net accepts a contextual sequence of mosaiced input frames

{Yi}B−1
i=1 and a target frame Y . We use B to denote the total number of frames used as input to a

temporal demosaicing network. MFD-Net consists of 3 submodules. The first module is a spatial

demosaicing network that produces a first-pass demosaiced sequence {X̃i} and target X̃. The next

module aligns each frame Xi to the target X̃ using a PWC-Net [57] style architecture to estimate

optical flow. A final module is used to extract interpolation features from the sequence of aligned

frames and the computed flows. The interpolation features learned from the final module are fed
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into a softmax component, which generates a frame-wise probability distribution for each pixel.

Softmax for a vector input x is calculated by

softmax(x)[i] =
ex[i]∑
j e

x[j]
.

Thus a vector passed through softmax is normalized, and can be interpreted as a per-pixel probability

distribution on the correctness of information in aligned frames. In our case, softmax operates over

each feature vectors (one feature vector per pixel) in the final interpolation features. The output

is obtained by calculated the expected value of each pixel subject to the frame-wise probability

distribution.

We observe that, abeyant ground-truth optical flow for the training dataset, there is no guarantee

that MFD-Net is computing an accurate optical flow internally. If MFD-Net is trained end-to-end,

it may learn a way to warp the original input data in a way that “cooperates” with the spatial

demosaicing subnetwork and softmax pixel prediction component to produce a final demosaiced

frame, but would not be acceptable as a standalone optical flow. To circumvent this issue, we

simply transplant the architecture and learned weights of PWC-Net into MFD-Net, wholesale. This

approach is called transfer learning in the literature. By transferring PWC-Net into MFD-Net, we

avoid the difficulty of having to train a flow estimation network from scratch on real-world video

sequences without ground truth flow3. However, as in [68], we may fine-tune the internal flow

network for the particular demosaicing task after having imported the main parameters.

Training MFD-Net is a difficult task because of the problem of softmax saturation. We empirically

observe this problem in almost every one of our experiments. Softmax saturation occurs when,

instead of learning to use a combination of pixels across the different aligned frames, the interpolation

feature submodule instead “cheats” by discarding all frames except the first-pass demosaiced target

3Our numerical experiments indicate that this is a very difficult task.
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frame (saturating the target frame softmax coefficients). This behavior is observed with gradient-

descent based training algorithms if the spatial demosaicing network employed in MFD-Net is high-

performing and the aligned frames are slightly misaligned. On the basis of our current experiments,

every MFD-Net with a pre-trained spatial demosaicing subnetwork learns to cheat with softmax

saturation. In light of this, to show a table of results for such networks amounts to repeating the

earlier spatial demosaicing section.

Algorithm 12: MFD-Net

Data: {Yi}Bi=1: Bayer input frames, {φi}5i=1: convolutional filter banks for learning input
features, SpatialDemosaic: A pre-trained spatial demosaicing network (such as
RRDBNet) that operates on each frame separately, CostVolume: algorithm to
compute the cost volume of section 5.8, ResFlowCorrection: network (such as
RRDBNet) to compute the residual flow correction with convolutional layers,
Softmax: pixel-wise probability estimator

Z0 ← Y1 ◦ · · · ◦ YB for i ← 1 to 5 do
Zi ←↓2 Zi−1

Fi ← φi ∗ Zi
end
F0 ← SpatialDemosaic(Z0)
ν5 ← 0
for i ← 5 to 1 do

Ci ← CostVolume(Fi, νi−1)
νi−1 ← ↑2 (νi + ResFlowCorrection(Ci ◦ νi−1)

F̃i−1 = Warp(Fi−1, νi−1)

end

S0 ← F̃0 ◦ ν0

for i ← 1 to K do
Si ← ψi ∗ Si−1

end
p = Softmax(SK)

return Ep[F̃0]

To circumvent the softmax saturation problem, we consider training MFD-Net architectures

with low-quality spatial demosaicing. If a simple bilinear interpolation is used to generate the

first-pass demosaiced sequence, we observe empirically that the resulting network does learn to use
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Table 6.4: MFD-Net demosaicing a 2-frame sequence using bilinear spatial subcomponent vs. purely
spatial bilinear demosaicing

Network Parameters Epochs Training Vimeo90K Test Subset

MFD-Netbilin 9 868 232 50 L2, Adam@1e-4 33.85
Bilinear - - - 32.415

Figure 6.2: Left: MFD-Net demosaiced target frame of a sample 2-frame video sequence. Center:
Difference map between interpolation and ground truth. Right: Ground truth target frame. Best
viewed zoomed in on digital PDF.

softmax interpolation across the different frames. Quantitative results are given in Table 6.4, and

qualitative results are shown in Figures 6.2 and 6.3.

This proof-of-concept result suggests that it is possible to leverage contextual temporal informa-

tion from arbitrary frame sequences for the multi-frame demosaicing problem. Further work may

investigate alternative training schemes for networks like MFD-Net to avoid the softmax saturation

phenomenon.

Subsection 6.3.2

Recurrent back-projection for video demosaicing

We consider an application of the Recurrent Back-Projection Network (RBPN) of [23] discussed in

Section 5.6 to the video demosaicing problem. The architecture of this model consists of a central

projection module which is recurrently applied to concatenated frame pairs {Yi, Y } where Yi is the
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Figure 6.3: Visualization of softmax coefficients for MFD-Netbilin for a sample 2-frame sequence.
Black indicates pixels used from context frame, white indicates pixels used from target

tth contextual mosaiced frame and Y is the target frame to be demosaiced. At each step of the

projection module, a low-resolution bundle of features is iteratively refined and used as input to

the next pass of the module, starting from the frame closest (temporally) to the target. Each step

of the projection module also produces a high-resolution bundle of features. After all frame pairs

have been processed, a final convolutional layer interpolates the demosaiced target frame from the

intermediate high-resolution feature bundles. We define the architecture RBPNB more precisely in

Algorithm 13.

We define the RBPN2 network for video demosaicing with a single temporal context frame.

Following [23], we use a modified DBPN2 network for SpatialNet↑ that accepts a 128-channel

low-resolution input and produces a 64-channel high-resolution output. For MultiFrameNet↑, Resid-

ualNet, and DecoderNet↓ we use a ResNet architecture of depth 14 with skip connections every other

layer. Each low-resolution feature bundle produced contains 128 channels, and each high-resolution

feature bundle produced contains 64 channels. The resulting architecture contains 1,195,531 pa-

rameters for 1 context frame (B = 2). Because the architecture is recurrent, parameters are reused

between input frames and thus the number of parameters increases only slightly with B. This

network is heavier than most previously proposed for demosacing single frames or burst sequences,
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but is an order of magnitude lighter than flow estimation networks like PWC-Net. Importantly,

the proposed network does not perform optical flow estimation. Haris et al. find that including

flow information for the temporal context frames effects only a marginal improvement in network

predictions.

We also investigate how DBPN performs under more restrictive conditions on network size.

We train a reduced architecture with only 64 low-resolution intermediate feature channels and 32

high-resolution intermediate feature channels, with the internal ResNets with depths of only 6 and

internal feature channels of 32 instead of the earlier 64, and the internal DBPN2 using 32 internal

feature channels instead of 64. We also increase the number of temporal context frames from 1 to

3. The resulting network RBPN4 has 413,563 trainable parameters.

We find that RBPN2 is capable of significantly outperforming spatial-only demosaicing meth-

ods on the Vimeo90K 200 sequence testing set. RBPN4 is also able to outperform spatial-only

demosaicing at a reduced network size. We report our results of training this network in Table 6.5

compared to the best spatial-only demosaicing RRDBNet method we trained (labeled RRDBNet∗)

and simple bilinear interpolation applied to the target frame of the sequence. These results show

that the incorporation of temporal context information into the demosaicing problem for video

sequences can lead to improved demosaicing quality.

Subsection 6.3.3

Qualitative comparison for temporal demosaicing

For qualitative comparison of several of the proposed temporal demosaicing methods, we include

Figure 6.4. We include 64 × 64 patches where temporal context helps RBPN4 outperform the

spatial-only RRDB∗ network, and one patch where the networks are equally matched. The JPEG
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Algorithm 13: RBPNB for video demosaicing

Data: Y : target Bayer frame, {Yi}B−1
i=1 : Bayer context frames (temporally closest at index

1, temporally furthest at index B − 1), φ, ψ,Φ: convolutional operators (with biases),
ρ: nonlinearity, SpatialNet↑: CNN that back-projects from low-resolution feature
space to high-resolution feature space, MultiFrameNet↑: CNN that obtains a
back-projected residual from temporal context frames, ResidualNet: CNN for
computing high-resolution residual to improve accuracy, DecoderNet↓: CNN
corresponding to the forward operator, reduces high-resolution features to
low-resolution features

Initialize low-res features L0 and hi-res features H
L0 ← ρ(φ ∗ Y )
H ← 0
Loop through context frames and apply projection module
for i ← 1 to B − 1 do

Learn features M from concatenated frames
Zi ← Yi ◦ Y
Mi ← ψ ◦ Zi
Back-projection module obtains high-res features
Hi,s ← SpatialNet↑(Li−1)

Hi,m ← MultiFrameNet↑(Mi)
Ei ← ResidualNet(Hi,s −Hi,m)
Save hi-res feature bundle for later concatenation

Ĥi ← Hi,s + Ei

H ← H ◦ Ĥi

Forward module obtains next iteration of low-res features

Li = DecoderNet↓(Ĥi)

end
return ρ(Φ ∗H)

Table 6.5: RBPN networks for video demosaicing compared to spatial-only methods. The learning
rate was reduced by a factor of 10 at epoch 189 for RBPN2 and at epoch 125 for RBPN4.

Network Parameters Epochs Training Vimeo90K Test Subset

RBPN2 1 195 531 208 L1, Adam@1e-3 45.271
RBPN4 413 563 175 L1, Adam@1e-3 44.795

RRDBNet∗ 419 852 20 700 L1, Adam@1e-3 44.748
Bilinear - - - 35.390
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artifacts that spoil the Vimeo-90K dataset are noticeable in the difference maps, a reminder that a

high-quality dataset is necessary before a sufficiently generalizable network can be trained.

Interestingly, RBPN4 often outperforms RRDB∗ on the edges of objects in the frames. This

result is slightly counterintuitive, since the edge of an image in a sequence of frames constitutes

a high-frequency moving target that, a priori, one might expect to be difficult to demosaic using

temporal methods.

Section 6.4

Conclusion

In this manuscript we have examined the use of convolutional neural networks for the image and

video demosaicing problems. We briefly summarize our conclusions from the numerical experiments

in this chapter. First, dense residual architectures like the residual-in-residual dense block for single-

image demosaicing offers a significant improvement over existing identity or bilinear bypass networks,

even when controlling for the network parameter count. Second, the MFD-Net architecture for use

in burst and video demosaicing has demonstrated the potential to improve demosaicing quality over

purely spatial methods, but training such network architectures poses significant difficulties. Finally,

by adapting the recurrent back-projection architecture (inspired by early work in super-resolution)

for the demosaicing problem, we showed that a video demosaicing network without the estimation

of optical flow can produce significantly higher-quality demosaiced images compared to spatial-only

demosaicing networks.

Future work might consider developing a theoretical basis for the use of dense residual connections

in iterative reconstruction schemes, overcoming the training problem for MFD-Net, and investigating

the conditions under which regions of a reconstructed image become spoiled. Additionally, the
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GT RBPN4 diff. RBPN4 RRDB∗ diff. RRDB∗

Figure 6.4: Qualitative evaluation of temporal demosaicing methods. The difference maps are
amplified by a factor of 5 for easier comparison. Ground truth (GT) is displayed on the left.
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construction of a realistic video demosaicing dataset would greatly aid efforts to develop practical

temporal demosaicing algorithms for video and film scanning applications.
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